Middlebury

CSCI 201: Data Structures
Spring 2025

Lecture 12W: Course wrap-up

Specifics we learned

Data Structures

Arrays

Lists: ArrayList and LinkedList
Sets: HashSet and TreeSet
Maps: HashMap and TreeMap

Stacks, Queues, Priority Queues /
Heaps

Trees: Binary Search Trees
Graph representations

Software
* Java API

* Objects, Classes

Algorithms

Iterative

Hashing

Big O Asymptotic Analysis
Recursive

Sorting

Greedy

Graph

* Interfaces, implementations

* Testing, Debugging

Algorithms / code

In order to execute an algorithm on a real computer,
we must write the algorithm in a formal language. An
algorithm so written is a program.

In this class we explore both:

Theory Practice
e Design an algorithm * Write a Java program
* Analyze performance * Debug/test

e Data structure tradeoffs ¢ Measure performance

Why efficiency matters

* You wrote the next big social media app:
* Will it work if it has 1 billion users?
 What about on a phone with limited memory?

* |n the sciences, discovery depends on computing with
big data:
e Sequencing the human genome
e Surveying millions of images in astronomy
* Processing data logs from the CERN collider

* Pushing the limits of current technology:
e Virtual / augmented reality?
* Deep neural networks for large scale machine learning?

What can computers do?

NETFUX 50

amazo
N

What can’t computers do?

* Some problems cannot be solved at all
* One program detects all infinite loops

* Some problems cannot be solved efficiently
* Listing all N-bit sequences of O's and 1's

 Some problems can be approximately solved
* Al, ML, close-to-optimal is good enough

Halting Problem

* Can we write doesHalt as specified? Suppose so!
* Like the Java Compiler: reads a program

public class ProgramUtils
/**
* Returns true if progname halts on input,
* otherwise returns false (infinite loop)
*/
public static boolean doesHalt (String progname) {
}

Can we confuse doesHalt?

* What if doesHalt (confuse) returns true?
* Then confuse () does not halt (see below)

* What if doesHalt (confuse) returns false?
* Then confuse () does halt (see below)

public static boolean confuse () {
if (ProgramUtils.doesHalt (confuse)) {
while (true) {
// do nothing forever

}

Formal proof by Alan Turing

* Alan Turing first showed this for programs: 1936
* Had to formally specify what a program was
* Needed to invent concept of Turing Machine
* Also demonstrated by Alonzo Church

e Cantor showed # Real Numbers > # Rationals
* So-called diagonalization, 1891
 Ridiculed by establishment
* Argument essential to above

Shortest / longest paths

* Dijkstra's Algorithm one example
e Others: Floyd-Warshall and more
* Very efficient graph algorithms

* Longest Path? No efficient solution known

* Easy to verify "is this path greater than length k"
e Exponentially many paths

Pvs NP

* Pis the set of (algorithmic) problems that can be solved by a
deterministic Turing Machine (DTM) in time that is
polynomial in the size of the input (polynomial time).

* i.e., can solve with a program that is O(1), O(N), O(Nlog(N)),
O(N?), O(N3), ..., O(N228), ...

* NP is (roughly) the set of (algorithmic) problems for which a
solution can be verified by a DTM in polynomial time.

* Equivalently: problems that can be solved by a nondeterministic
Turing Machine in polynomial time (Quantum computing???)

P 7= NP

NP-Hard

NP-Complete

P = NP

By Behnam Esfahbod, CC BY-SA 3.0,

-Complexity

NP-Hard

P = NP
= NP-Complete

https://commons.wikimedia.org/w/index.php?curid=3532181

e Most think P I= NP

* Greatest outstanding
qguestion in theoretical

computer science

* Proofis worth a S1M
prize from the Clay
Mathematics Institute

“Easy” hard problems

* Some problems are hard to solve but easy to approximate:

e Can’t write a program to give you the optimal solution
efficiently but can find something within € of optimal in
polynomial time.

* Greedy, randomized, etc.

* Some problems are hard to prove things in theory but easy to
solve in practice

e Can’t prove much but it works well in practice

Al / ML often work with experimental
algorithms for hard problems

Common idea: Use a
computer to learn a
function/neural network that
approximates a large dataset.
* Image segmengation /
classification

Face/speech recognition
Machine translation

Text generation
Reinforcement learning
Robotics

Practice coding!

- LeetCode

- CodingBat

- HackerRank

- CodeForce

- Codelam

- Project Euler

- GitHub Student Developer Pack

- Write code for fun, to solve puzzle, game

Final exam format

Programming portion

Monday 5/12 through Thursday 5/15
Independent problems submitted to Gradescope

Submit as often as you like, but Gradescope will only indicate
whether the code compiled
One hour grace period for lateness (not 1 day)

Written exam

- Thursday 5/15, 2:00 - 5:00, MBH 224 and 206
- Short answer, sketching
- No devices

Next:

Course Response Forms

Continue working on Homework 10, due Thursday 5/8
e Lab 10 on Friday 5/9: practice and surveys

e Monday 5/12: office hours, no lab meetings

