
CSCI 201: Data Structures
Spring 2025

Lecture 10M: Hash Tables (Part 1)

1 

Goals for today:

Solve problems using Java's built-in HashSet and HashMap (which are built using a hash table).
Write our own hashCode and equals methods for our custom types in order to use them with Java's
built-in HashSet and HashMap.
Use a hash function to determine the index of a key in a hash table.
Practice with bitwise operators.

2 

Consider this problem:
Suppose we start at some point in a grid and can move left, right, up or down (no diagonal movement).
We can only step into a grid point that we have not yet visited and cannot step out of bounds of the grid.
Open PointTracker.java and brainstorm how you would design a solution for the
boolean haveBeenHere(Point point) method (without a Set or Map).

3 

One possible solution:

public class PointTracker {
 boolean[][] visited;

 public PointTracker() {
 visited = new boolean[GRID_SIZE][GRID_SIZE];
 for (int i = 0; i < GRID_SIZE; i++) {
 for (int j = 0; j < GRID_SIZE; j++) {
 visited[i][j] = false;
 }
 }
 location = new Point(0, 0); // or in middle
 move(location);
 }

 public boolean haveBeenHere(Point point) {
 return visited[point.x][point.y];
 }

 public void move(Point newLocation) {
 visited[newLocation.x][newLocation.y] = true;
 location = newLocation;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

but...

Is there a way to use less memory?

4 

We only want to keep track of points we've visited.
ArrayList of Points?

But we also want to be able to (quickly) look up if we've visited a point.

 Idea: use an array, but find a way to map items to array indices.

5 

Introducing hash functions: map items (keys) to an array index.

Imagine our keys are integers (we'll come back to custom types like Point later).

Example: storing student ID to name.

Green onion: 00837194
Fire lizard: 00833462
Blue turtle: 00749132
Electric mouse: 00678395
Clam: 00889321
Fox: 00765432
Sleepy panda: 00812493
Radish: 00754639

6 

Hash functions: map the universe of keys to a restricted range
(e.g. the size of an array).

What makes a good hash function?

m

Deterministic: should always return the same value.h(k)
Fast to evaluate: if it's expensive (e.g.) then we don't gain anything by using a table.logn

The challenge is that we generally don't know the distribution of the keys.

Example: division method ().

m k
11 25

11 1

11 17

13 133

13 7

13 25

Good rule of thumb (for division method) is that is a
prime number not too close to a power of 2.

h(k) = k mod m

h(k)

m

7 

Concern: what if multiple keys map to the same array index?
COLLISION

m k
11 25

11 1

11 17

11 34

h(k)

8 

Implementing a hash table for custom types.

Override public int hashCode().
To add(K key) or put(K key, V value):

1. Evaluate key.hashCode() to get an integer.
2. Use the result to determine the array index.
3. Place item in bucket at array index.

To get(K key):
1. Evaluate key.hashCode() to get an integer.
2. Use the result to determine the array index.
3. Retrieve item in bucket at array index.

But as we said, there may be collisions (or multiple keys that map
to the same bucket). We need to iterate through items in the
bucket to find the item that is associated with the key:

So we need to find the item with a key (i.e. check key equivalence).
Requires overriding public boolean equals(Object otherObj).

Load factor: .
: number of items (size).
: number of buckets (length of table array, i.e. capacity).

α = n/m
n
m
Higher : potentially go through many items in one bucket to search.α
Low means wasted memory.α

Resize the table if load factor is outside acceptable range.
And be sure to rehash items (recompute table indices).

class Point {
 public int x;
 public int y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override
 public int hashCode() {
 // TODO how should we hash two integer values?
 }

 @Override
 public boolean equals(Object otherObject) {
 Point otherPoint = (Point) otherObject;
 return (otherPoint.x == x) && (otherPoint.y == y);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

9 

A detailed look into how Java does this (OpenJDK).
https://github.com/openjdk/jdk/blob/7b0f273e37625461baa333a3ef20fbbd93647243/src/java.base/share/classes/java/util/HashMap.java#L320

/**
 * Computes key.hashCode() and spreads (XORs) higher bits of hash
 * to lower. Because the table uses power-of-two masking, sets of
 * hashes that vary only in bits above the current mask will
 * always collide. (Among known examples are sets of Float keys
 * holding consecutive whole numbers in small tables.) So we
 * apply a transform that spreads the impact of higher bits
 * downward. There is a tradeoff between speed, utility, and
 * quality of bit-spreading. Because many common sets of hashes
 * are already reasonably distributed (so don't benefit from
 * spreading), and because we use trees to handle large sets of
 * collisions in bins, we just XOR some shifted bits in the
 * cheapest possible way to reduce systematic lossage, as well as
 * to incorporate impact of the highest bits that would otherwise
 * never be used in index calculations because of table bounds.
 */
 static final int hash(Object key) {
 int h;
 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Table (array) size is always a power of 2.
Table index computed from hash(key) & (m - 1) where is the capacity (table length).m

^ means bitwise XOR (exclusive OR): e.g. 01101 ^ 11001 is

>>> means unsigned right shift (here, by 16 bits): e.g. 01101010 >>> 4 is

& means bitwise AND: e.g. 00110 & 111 is

In your Terminal, type jshell and use Integer.toBinaryString to try these out! Ctrl-D to exit.

10 

https://github.com/openjdk/jdk/blob/7b0f273e37625461baa333a3ef20fbbd93647243/src/java.base/share/classes/java/util/HashMap.java#L320

What exactly is hash(key) & (m - 1)doing?
Remember that Java (OpenJDK) picks the table size to be a power of 2.

Example: is 10000, so m - 1 is

What is 15 & 15?

What is 73 & 15?

m = 16

11 

Exercise: compute the hash table indices for the
following Points (using Java's technique).

Starting with a table size m = 16.
Table index = hash(key) & (m - 1).
Point 1: (1, 1)
Point 2: (12345, 678)

static final int hash(Object key) {
 int h;
 return (key == null) ?
 0 : (h = key.hashCode()) ^ (h >>> 16);
}

1
2
3
4
5

class Point {
 public int x;
 public int y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override
 public int hashCode() {
 return 31 * x + y;
 }

 @Override
 public boolean equals(Object otherObject) {
 Point otherPoint = (Point) otherObject;
 return (otherPoint.x == x) && (otherPoint.y == y);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

12 

Additional notes:
For more hash functions, see:
Lab 7 due tonight.
Homework 8 due on Thursday 4/24: use a TreeMap to solve a problem and then implement
a DIY-version based on what your algorithm needs.
Next class: how can we handle collisions?

https://en.wikipedia.org/wiki/List_of_hash_functions

13 

https://en.wikipedia.org/wiki/List_of_hash_functions

