

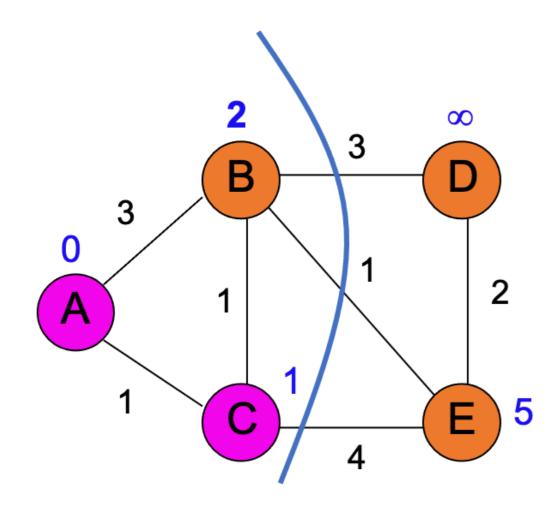
CSCI 201: Data Structures

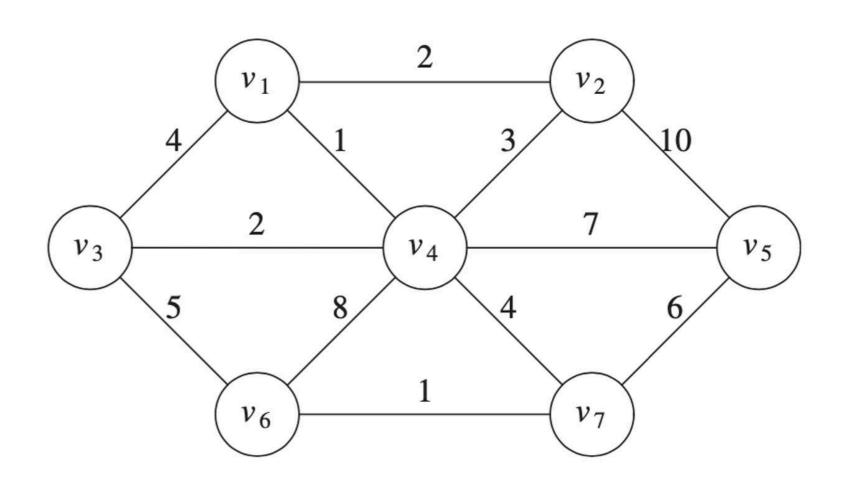
Spring 2025

Lecture 12M: Graph Algorithms

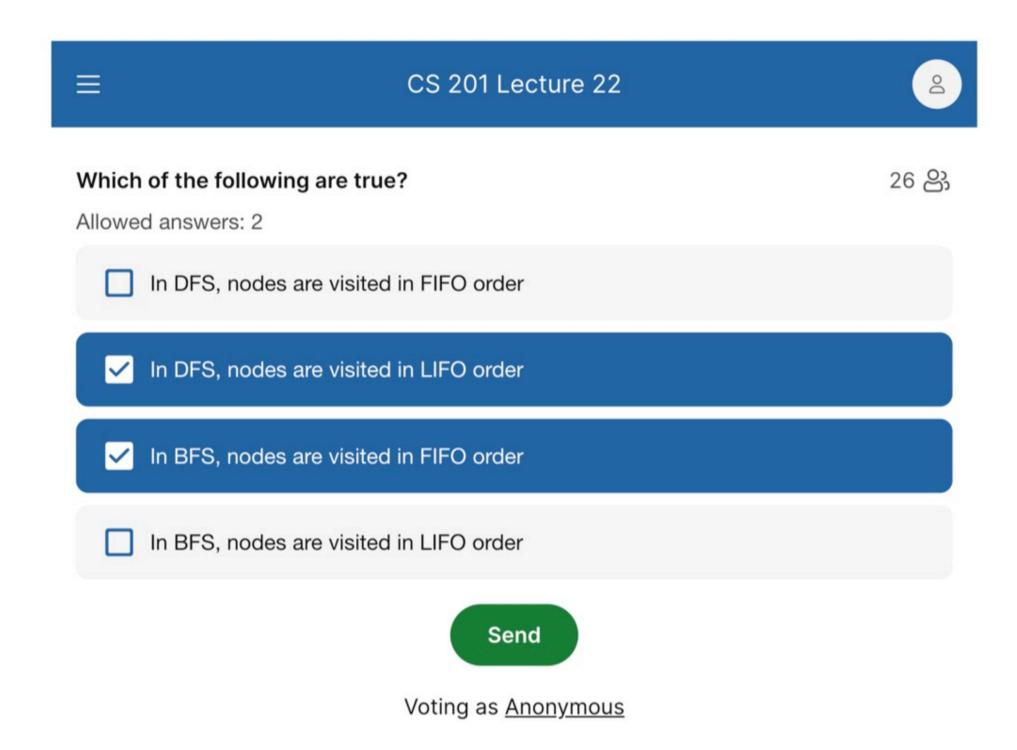
Today - Graph Algorithms

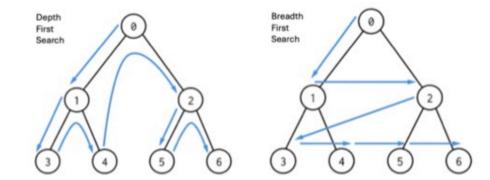
- Single-source shortest paths:
 - Dijkstra's algorithm
- Minimum spanning trees:
 - Kruskal's algorithm
 - Prim's algorithm





See Slido # 4086932





slido

Acceptable Use - Slido Privacy - Cookie Settings

Greedy algorithms

Why learn Greedy Algorithms?

- Sometimes a greedy algorithm is optimal
 - Huffman Compression
 - Prim's Minimum Spanning Tree
 - Kruskal's Minimum Spanning Tree
- Sometimes the greedy algorithm isn't provably optimal but works well in practice
- A greedy algorithm is typically easy to start with for optimization problems

Greedy algorithms

Optimization

- Find the solution that maximizes or minimizes some objective
- Example: Knapsack
 - Find the collection of items with maximum value without exceeding a budget
 - What would you buy if you had \$10?

Items	Value	Cost
8	2	\$1
	1	\$1
	10	\$10

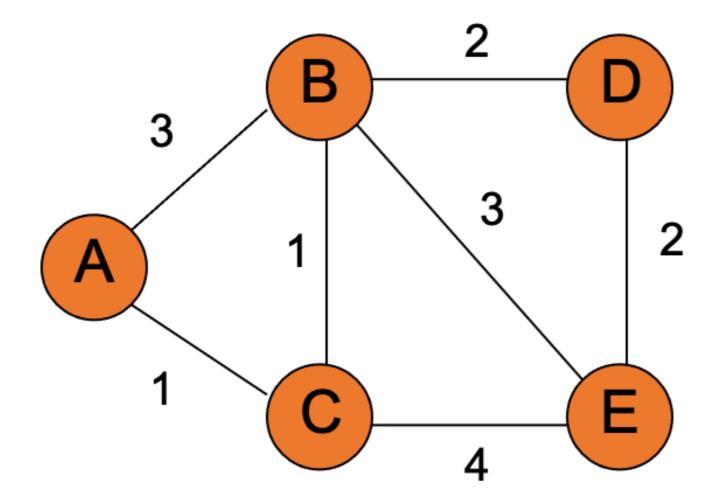
Greedy algorithms

Greedily Searching for Optima

- Start with a partial solution. In each iteration make a step toward a complete solution
- Greedy principle: In each iteration, make the lowest cost or highest value step
- Knapsack:
 - Partial solution is a set of items you can afford
 - Greedy step: Add the next best value per cost item that you can afford

Shortest paths with weighted edges

What is the shortest path from a to d?



Key Idea

Explore the vertices in order of increasing distance from the starting vertex

Keep track of the distances to each vertex

If we find a better path, update that distance

Dijkstra's algorithm - high level

Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start = 0 and all others infinity

```
repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v → adj)
if path including v → adj is shortest then is best path for adj so far
update the distance for adj
update the priority queue
```

Initialize: distance to start = 0 and all others infinity

repeat

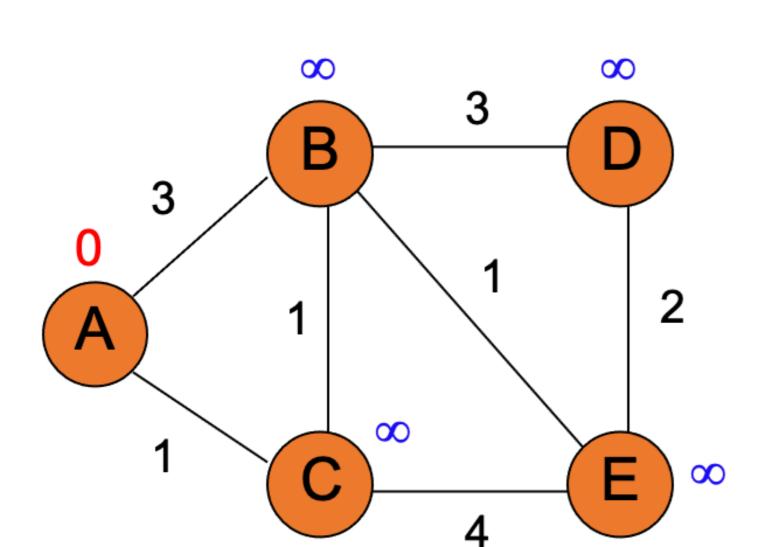
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v → adj)

if path including v → adj is shortest then is best path for adj so far

update the distance for adj

update the priority queue



PQ

Initialize: distance to start = 0 and all others infinity

repeat

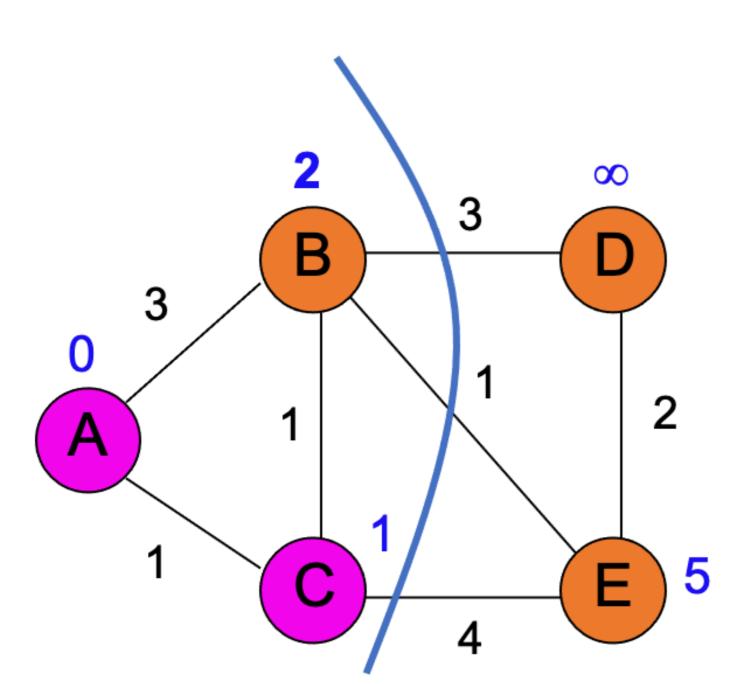
get vertex v with shortest distance

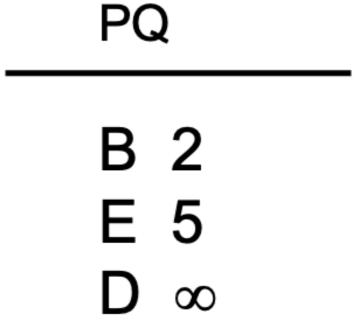
for each vertex, adj, adjacent to v (edge exists v → adj)

if path including v → adj is shortest then is best path for adj so far

update the distance for adj

update the priority queue





Frontier.

All nodes reachable from starting node within a given distance

Initialize: distance to start = 0 and all others infinity

repeat

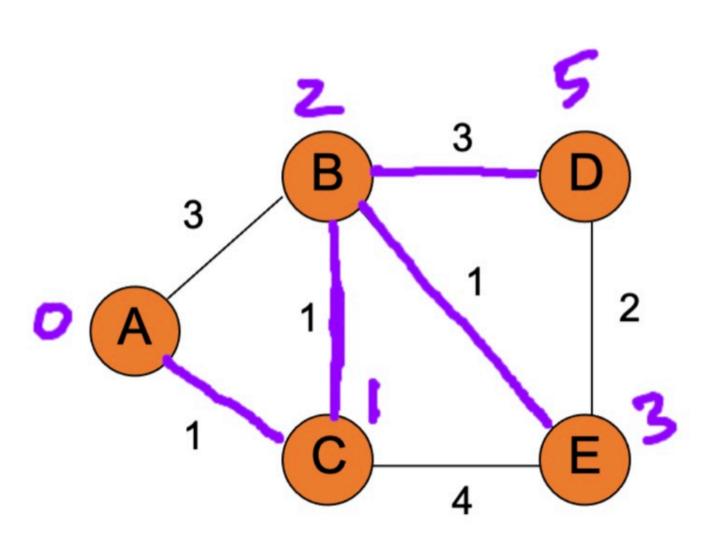
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists $v \rightarrow adj$)

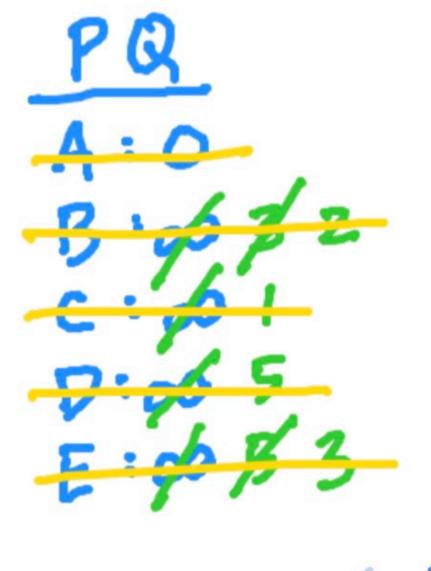
if path including $v \rightarrow adj$ is shortest then is best path for adj so far

update the distance for adj

update the priority queue



٧	distTo(v)
A	0
B	3(4)
C	I (A)
V	5(B) -(-X-)(-)
E	5(E)3(B)



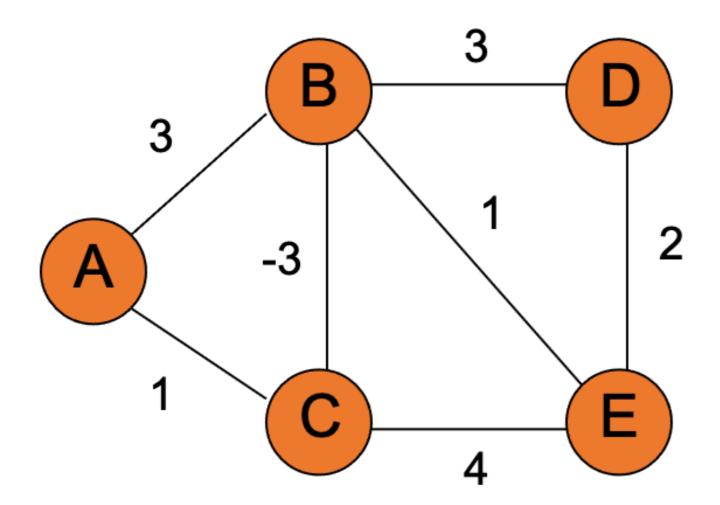
Why does it work?

When a vertex is removed from the priority queue, distTo[v] is the actual shortest distance from s to v

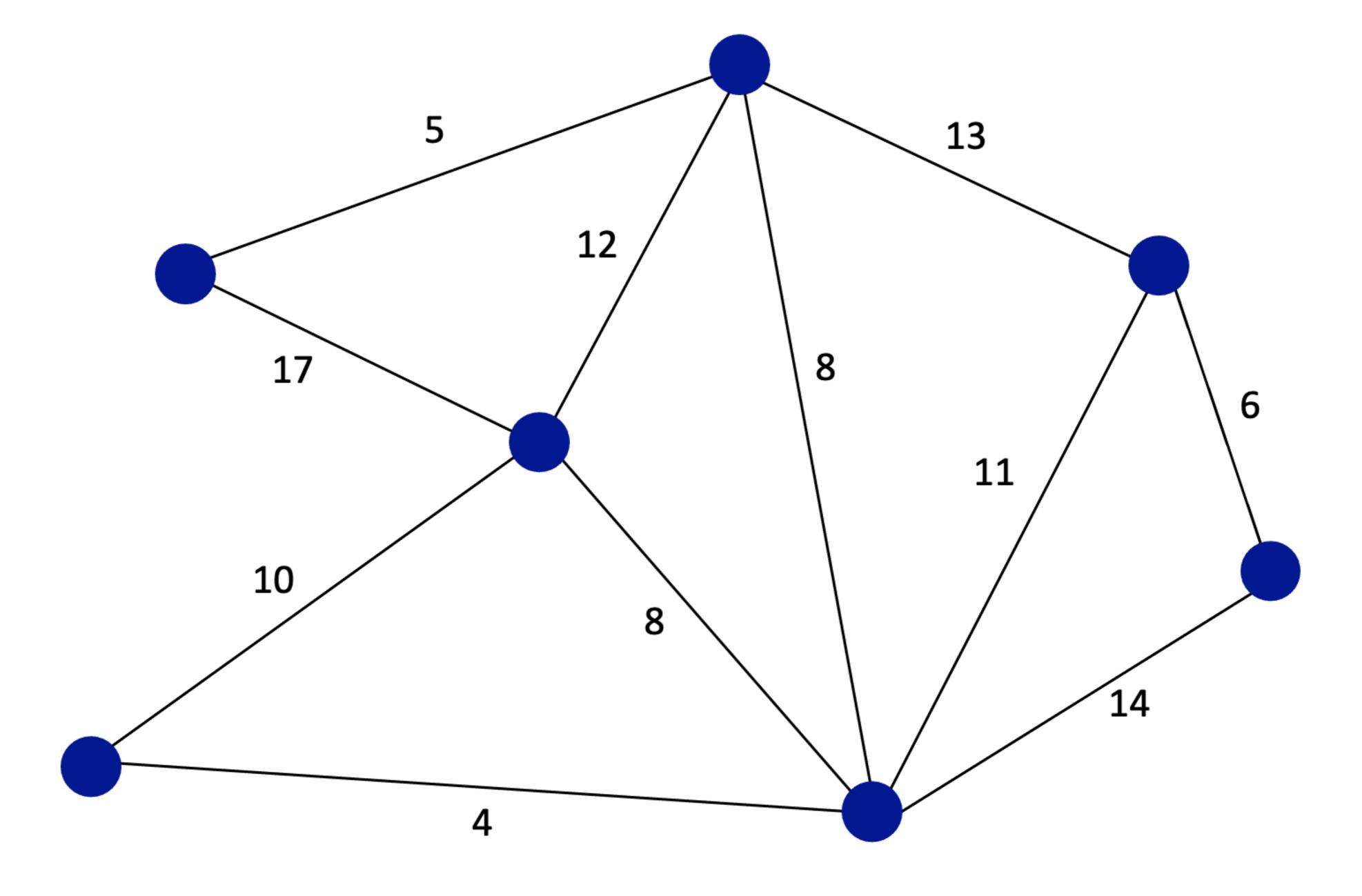
- The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Example graph with a negative edge weight

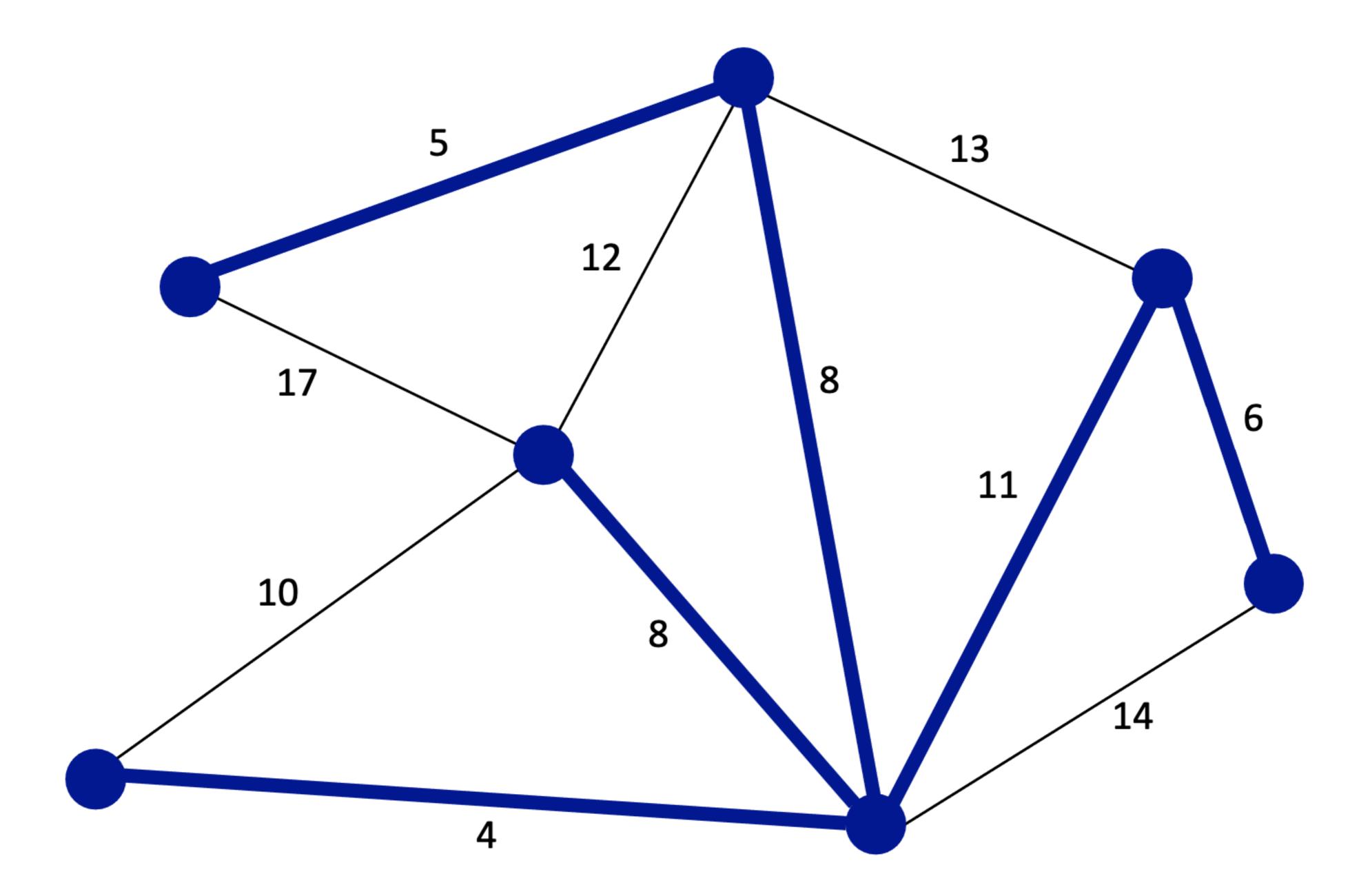
Dijkstra's only works on graphs with positive edge weights



A weighted graph



A minimum spanning tree



Kruskal's algorithm for minimum spanning trees

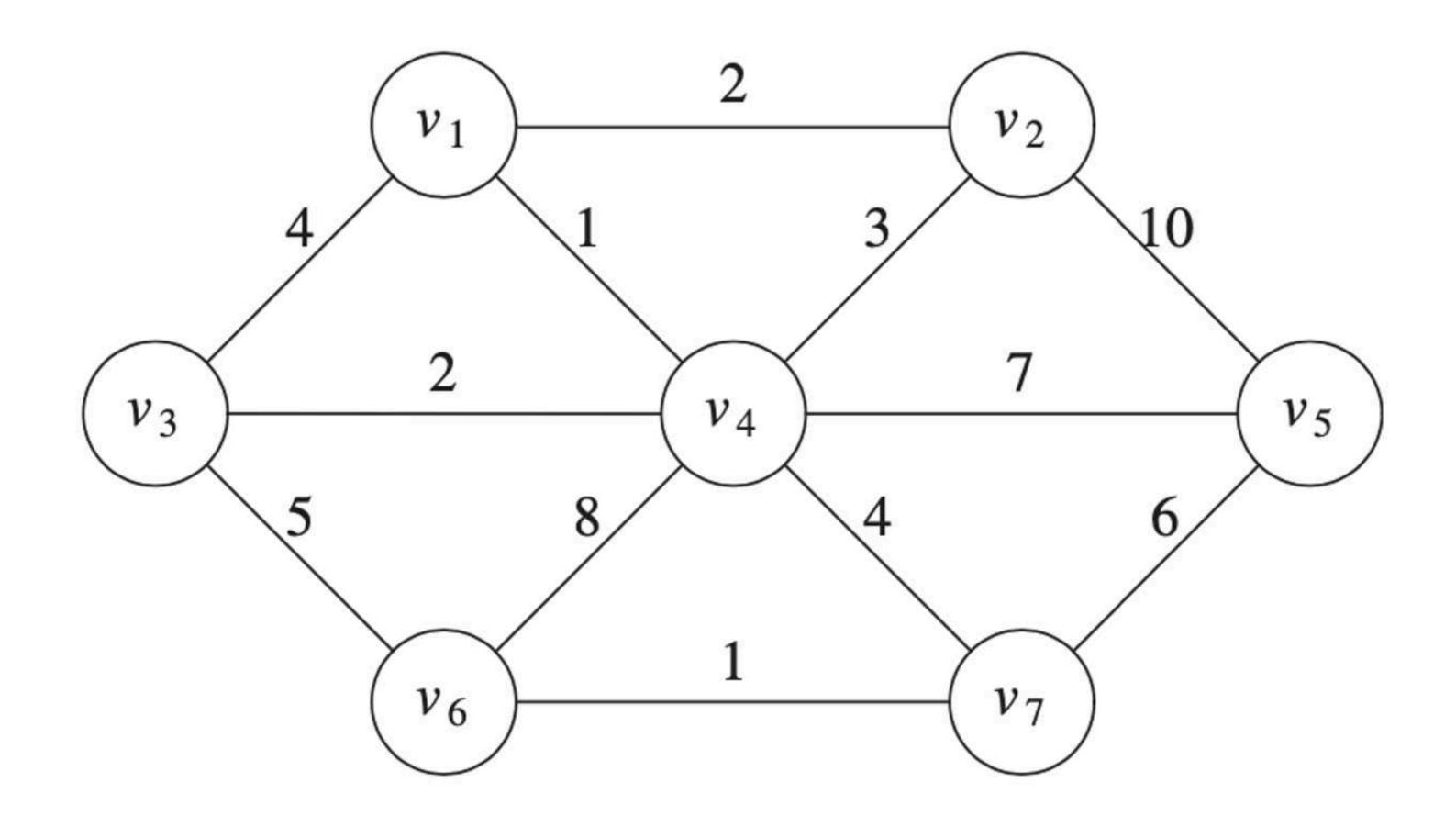
Minimum Spanning Tree

Kruskal's Algorithm

- Maintain a forest, ie, a collection of trees
- Initially there are |V| single-node trees
- Select edges in order of smallest weight and accept an edge if it does not cause a cycle
- Accepting an edge merges two trees into one

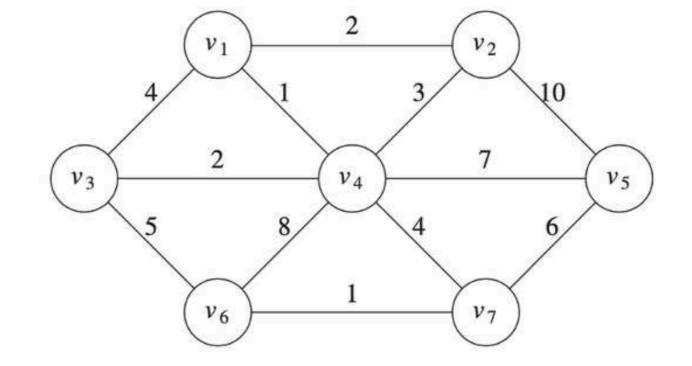
Kruskal's algorithm for minimum spanning trees

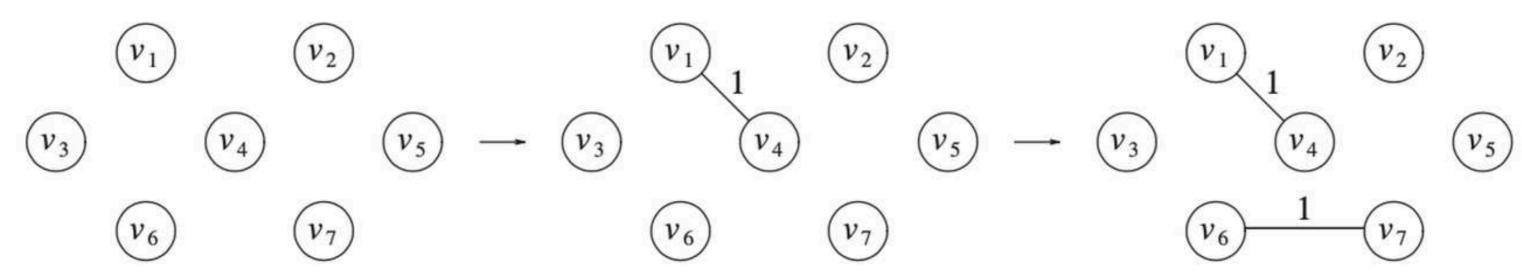
Kruskal's MST algorithm

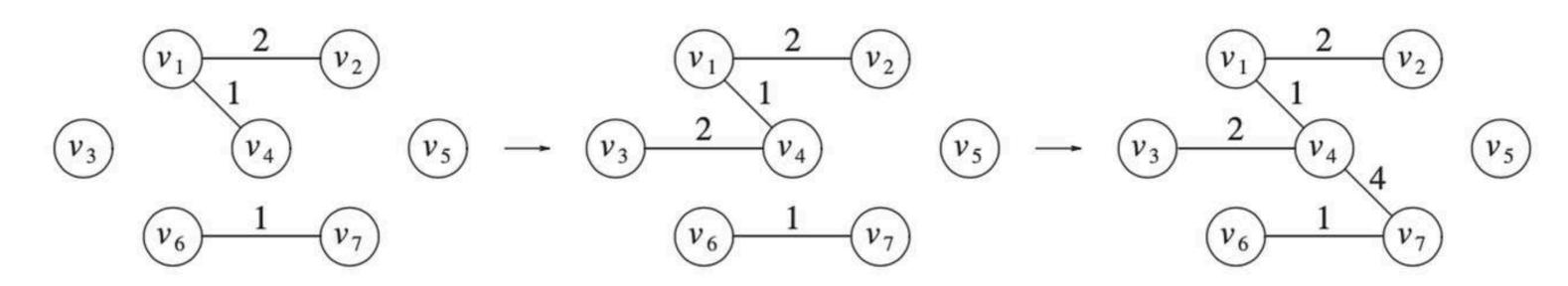


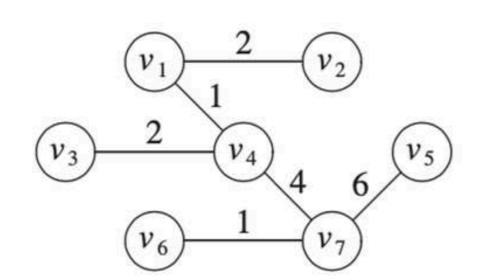
Kruskal's algorithm for minimum spanning trees

Kruskal's MST algorithm









Prim's algorithm for minimum spanning trees

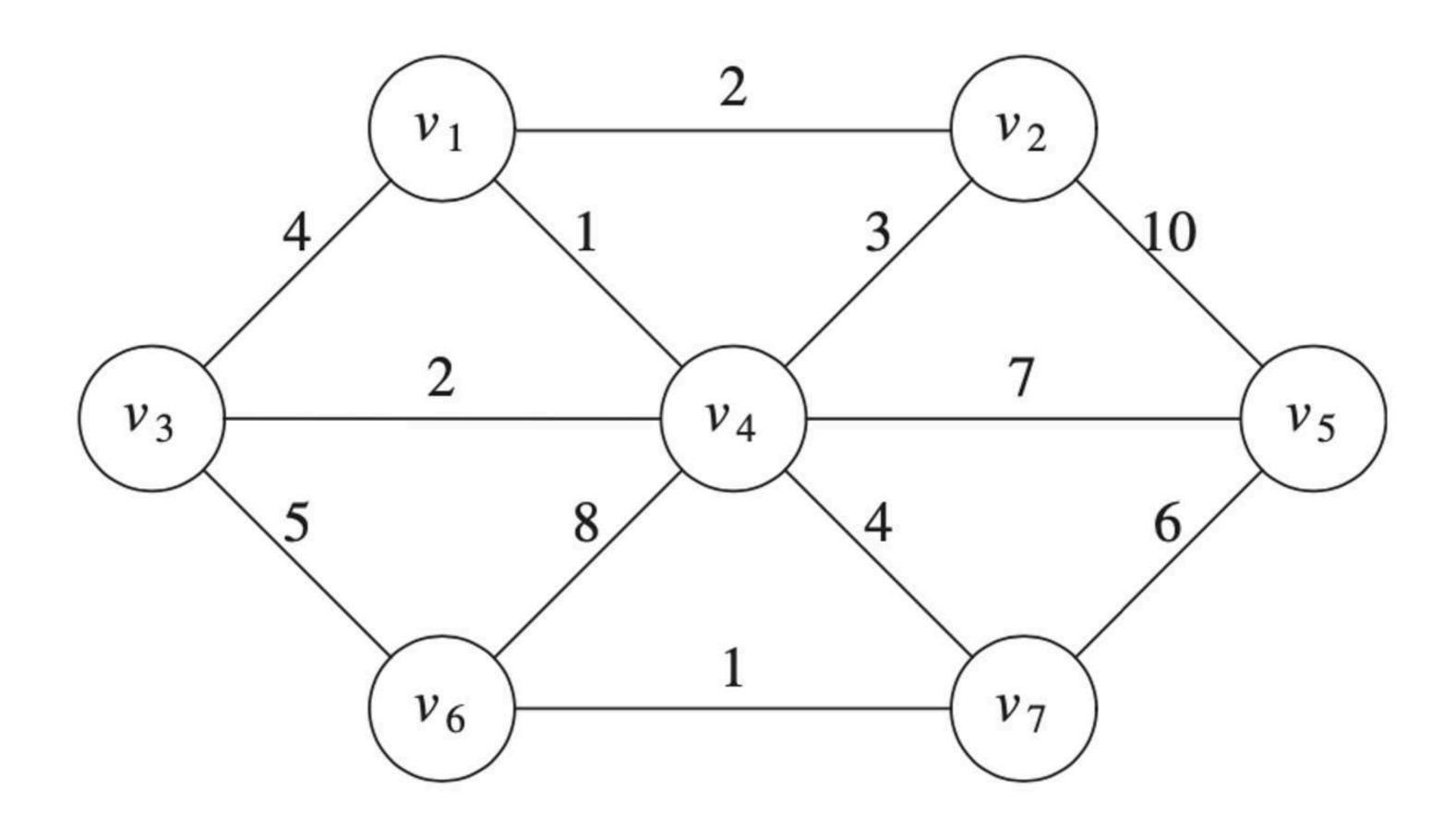
Minimum Spanning Tree

Prim's Algorithm

- Maintain a single tree
- At each stage add an edge and a vertex
- Select edge (u, v) such that cost of (u, v) is smallest among all edges where u is in tree and v is not

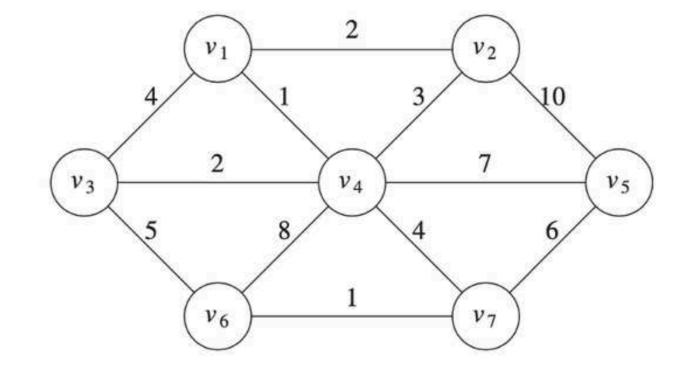
Prim's algorithm for minimum spanning trees

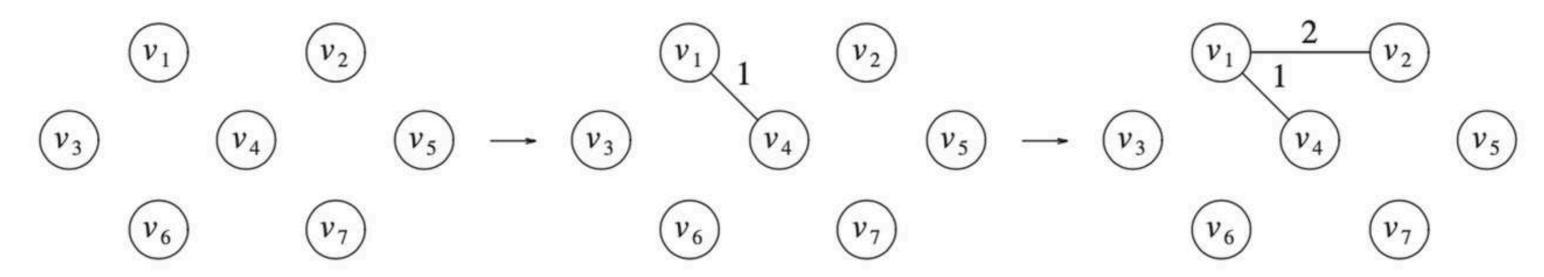
Prim's MST algorithm

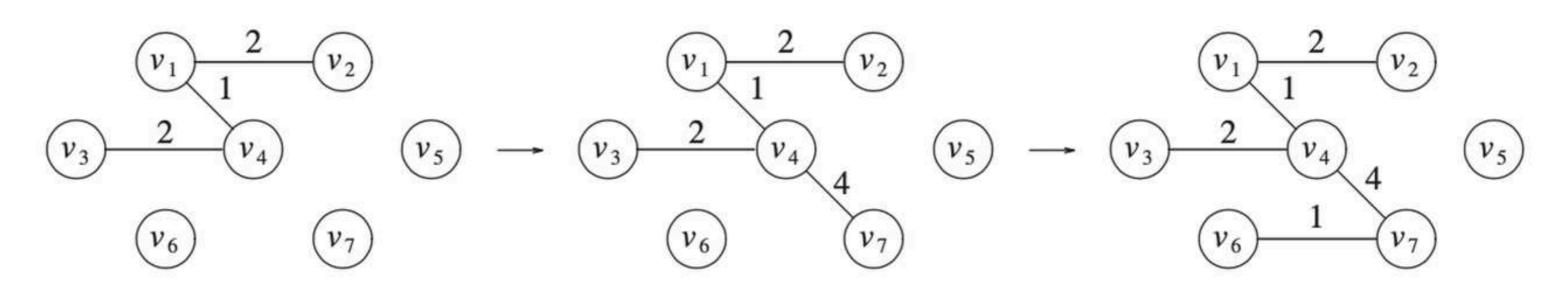


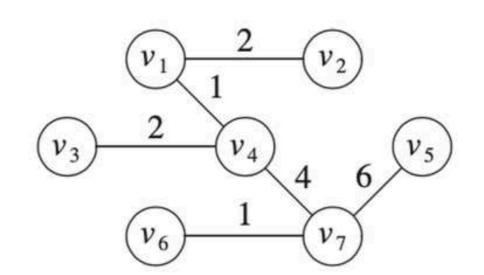
Prim's algorithm for minimum spanning trees

Prim's MST algorithm

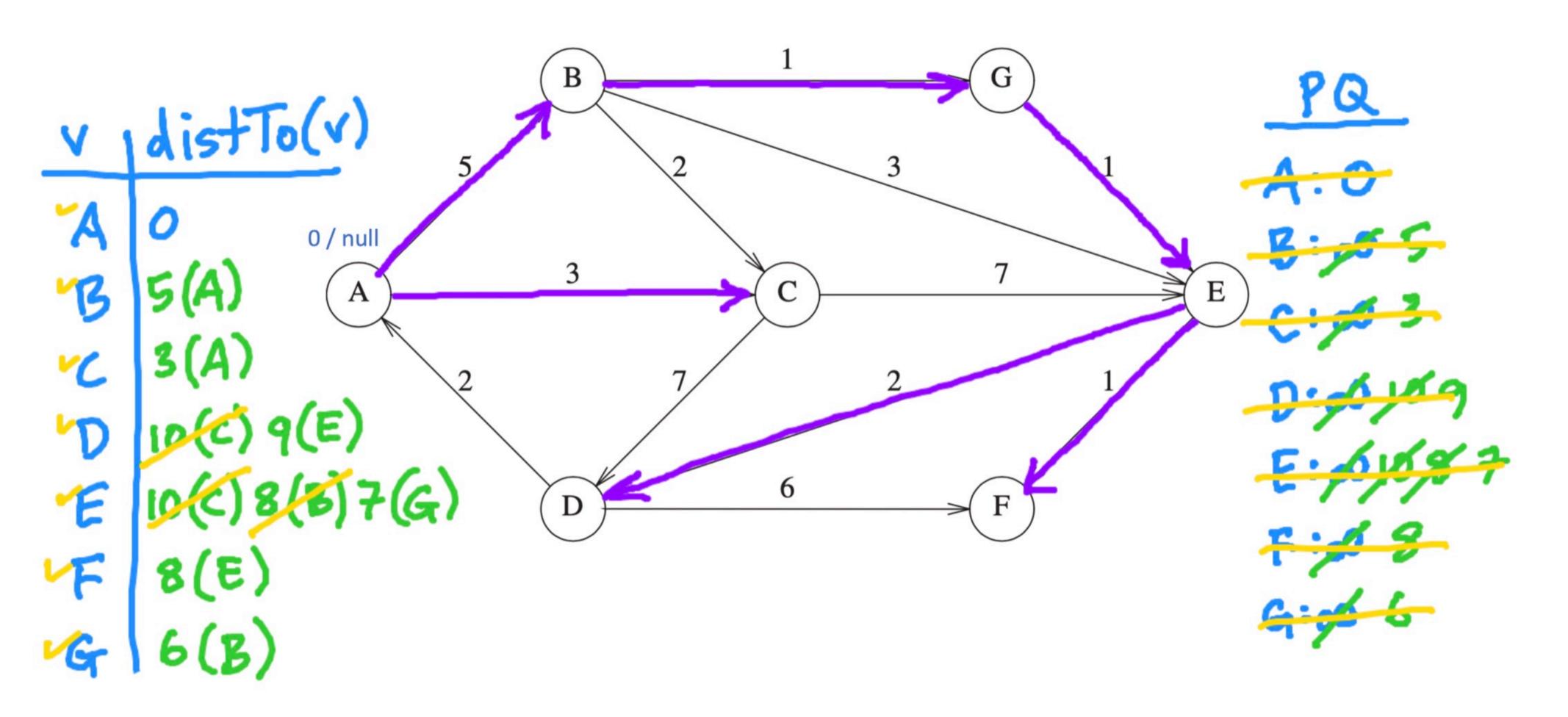








Practice with Dijkstra's algorithm



Coming up:

- Continue working on Homework 10, due Thursday 5/8
- Lab 9 assignment due tonight: if you haven't already, submit to Gradescope what you have so far for Homework 10 (even if no tests pass)
- Lab 10 on Friday 5/9: practice and surveys
- Monday 5/12: office hours, no lab meetings

