Middlebury

CSCI 201: Data Structures
Spring 2025

Lecture 12M: Graph Algorithms



Today - Graph Algorithms

e Single-source shortest paths:
- Dijkstra's algorithm

e Minimum spanning trees:
- Kruskal's algorithm
- Prim's algorithm

8 s




See Slido # 4086932

CS 201 Lecture 22

Which of the following are true? 26 &

Allowed answers: 2

In DFS, nodes are visited in FIFO order

In DFS, nodes are visited in LIFO order

In BFS, nodes are visited in FIFO order

In BFS, nodes are visited in LIFO order

Voting as Anonymous

slido

Acceptable Use = Slido Privacy = Cookie Settings




Greedy algorithms

Why learn Greedy Algorithms?

-Sometimes a greedy algorithm is optimal
- Huffman Compression
- Prim’s Minimum Spanning Tree
- Kruskal’s Minimum Spanning Tree

Sometimes the greedy algorithm isn’t provably optimal but works
well in practice

A greedy algorithm is typically easy to start with for optimization
problems

8 s



Greedy algorithms

Optimization

- Find the solution that maximizes
or minimizes some objective

- Example: Knapsack

- Find the collection of items with
maximum value without exceeding a

budget
- What would you buy if you had $107?

8 /s




Greedy algorithms

Greedily Searching for Optima

- Start with a partial solution. In each iteration make a step toward a
complete solution

- Greedy principle: In each iteration, make the lowest cost or highest
value step

- Knapsack:

- Partial solution is a set of items you can afford
- Greedy step: Add the next best value per cost item that you can afford

8 s



Dijkstra's algorithm

Shortest paths with weighted edges

What is the shortest path from a to d?

8 /s



Dijkstra's algorithm

Key Idea

Explore the vertices in order of increasing distance from the starting
vertex

Keep track of the distances to each vertex

If we find a better path, update that distance

8 s



Dijkstra's algorithm

Dijkstra’s algorithm - high level
Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v - adj)
if path including v = adj is shortest then is best path for adj so far
update the distance for adj
update the priority queue

8 s



Dijkstra's algorithm

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v - adj)

if path including v = adj is shortest then is best path for adj so far
update the distance for adj

update the priority queue

PQ

10



Dijkstra's algorithm

Initialize: distance to start = 0 and all others infinity

repeat

get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v - adj)
if path including v = adj is shortest then is best path for adj so far
update the distance for adj
update the priority queue

O m
8 U1 N

Frontier:

All nodes reachable
from starting node
within a given distance

11



Dijkstra's algorithm

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v = adj)
if path including v - adj is shortest then is best path for adj so far

update the distance for ad|
update the priority queue

> 19

M NW



Dijkstra's algorithm

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance fromstov

- The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Assuming no negative edge weights!
g /s

13



Dijkstra's algorithm

Example graph with a negative edge weight

Dijkstra’s only works on graphs with positive edge weights

8 /s

14



A weighted graph

5 13
17 :
10
3
14
4

8 s

15



A minimum spanning tree

8 s

16



Kruskal's algorithm for minimum spanning trees

Minimum Spanning Tree

Kruskal’s Algorithm

- Maintain a forest, ie, a collection of trees

- Initially there are |V| single-node trees

- Select edges in order of smallest weight and accept an edge if it does
not cause a cycle

- Accepting an edge merges two trees into one

B s 17



Kruskal's algorithm for minimum spanning trees

Kruskal’s MST algorithm

V1 . Vs
4 | 3
2 7
V3 V4
S 8 4
Ve : V7

8 s

18



Kruskal's algorithm for minimum spanning trees

Kruskal’s MST algorithm

@ (, ®
) Q @—~® o @—*@

%

(o)

8 /s

19



Prim's algorithm for minimum spanning trees

Minimum Spanning Tree

Prim’s Algorithm

- Maintain a single tree
- At each stage add an edge and a vertex

- Select edge (u, v) such that cost of (u, v) is smallest among all edges
where u is in tree and v is not

8 s

20



Prim's algorithm for minimum spanning trees

Prim’s MST algorithm

Vi - V2
4 | 3
2 7
V3 V4
S 8 4
Ve : V7

8 s

21



Prim's algorithm for minimum spanning trees

Prim’s MST algorithm

OO OO

() ) — @ ) - ®
) ()
D2

D2—)
OENO
e

8 /s

22



Practice with Dijkstra's algorithm

..o
[

1& \\ \I"\ .C"
-\ ¥ Y
D

P onomd O®E D

BN




Coming up:

e Continue working on Homework 10, due Thursday 5/8

e Lab 9 assignment due tonight: if you haven't already, submit to Gradescope what you have so
far for Homework 10 (even if no tests pass)

e Lab 10 on Friday 5/9: practice and surveys

e Monday 5/12: office hours, no lab meetings

a s 24


https://middcs.github.io/csci201s25/homework10/
https://middcs.github.io/csci201s25/lab09/
https://middcs.github.io/csci201s25/homework10/
https://middlebury.instructure.com/courses/16416/quizzes/38189

