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CSCI 201: Data Structures
Spring 2025

Middlebury

Lecture 11M: Graphs



Goals for today:

e Learn whatis a graph, edge, vertex/node, path, directed edge, cycle; learn what weights
represent; what is the degree of a node.

o Different types of graphs: directed, complete, connected.

e Represent a graph using an adjacency matrix.

e Represent a graph using adjacency lists.

e Represent graphsin Java.

: ®

. .O
8 .




Terminology: a graph consists of two sets: nodes (a.k.a. vertices) and edges
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e Two vertices are adjacent if there is an edge between them. The edge is incident to both vertices.

e The degree of a node is the number of edges incident to it.

e Apath is a sequence of nodes py, po, ..., pr where thereis an edge (p;, pi+1) in the set of edges. No edge is
repeated. A simple path has no repeated vertices.

e Acycleis a path where the first and last node are the same.
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Edges can also have a direction

Is there a cycle in this graph? N U
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Edges can also have weights
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What can weights be used for?
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We might want to calculate the shortest path between two nodes
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A graph is connected if there is a path between every pair of nodes
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Strongly connected (for directed graphs): every pair of nodes is
reachable by a path

Which edge can we add to make this graph strongly connected?



We have seen graphs before! A tree is a special type of graph .
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A tree is a connected, undirected graph without any cycles.
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Trees can be rooted or free.
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Complete graph: every pair of nodes is connected by an edge
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2D Representing graphs: adjacency matrix and adjacency lists
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Representing directed graphs (also with edge weights)
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Implementing this in Java using adjacency lists (or adjacency sets)

1 public class Graph<Node> {

2

3 // adjacency lists: node —> set of adjacent nodes
4 private HashMap<Node, HashSet<Node>> adj;
0

6 public Graph() {

7 adj = new HashMap<>();

8 }

9

10 public void addEdge(Node a, Node b) {

11 if ('adj.containsKey(a)) {

12 adj.put(a, new HashSet<>());

13 g

14 if ('adj.containsKey(b)) {

15 adj.put(b, new HashSet<>());

16 }

17 adj.get(a).add(b);

18 adj.get(b).add(a);

19 }
20
21  public boolean hasEdge(Node a, Node b) {
22 // or adj.get(b).contains(a) since undirected
23 return adj.get(a).contains(b);
24 '}
25
26 Set<Node> getNodes() {
27 return adj.keySet();
28}
29 }

public static void main(String[] args) {
Graph<Character> graph = new Graph<>();

graph.addEdge('a', 'd');
graph.addEdge('b', 'd');
graph.addEdge('c', 'd');
graph.addEdge('d', 'e');
9 graph.addEdge('e', 'f');
10 graph.addEdge('e', 'g');

1
2
3
4 graph.addEdge('a', 'b');
5
6
7
8

12 System.out.println(graph.hasEdge('b', 'a'));
13

14  System.out.println(graph.getNodes());

15 }

Brainstorm: how can we design a
getEdges () method?

{a,bg undivecld edge
(x,b) directed edge.
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Retrieving the set of edges

Maybe use a helper Edge class?

<Node> {
HashMap<Node, HashSet<Node>> adj;
HashSet<Edge> () 1
HashSet<Edge> edges <>();
(Node u adj.keySet()) A
HashSet<Node> Llist adj.get(u);
(Node v : list) A
10 edges.add(new Edge(u, v));
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7
8 }
9

}

cl

ss Edge {
ublic Node u;
ublic Node v;

ublic Edge(Node u, Node v) {
this.u = u;
this.v = v;

ass Edge {
public Node u;
public Node v;

public Edge(Node u, Node v) {
this.u = u;
this.v = v;

eqvals ()

public int hashCode() {
return 31 * Math.min(u.hashCode(), v.hashCode())
+ Math.max(u.hashCode(), v.hashCode());
}

@Override
@SuppressWarnings("unchecked")
public boolean equals(Object otherObj) {
Edge otherEdge = (Edge) otherObj;
return (u.equals(otherEdge.u) && v.equals(otherEdge.v)) ||
(u.equals(otherEdge.v) && v.equals(otherEdge.u));
}

public String toString() {
return "(" + u.toString() + ") —— (" + v.toString() + ")";

}
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Additional notes:

e Next class Wednesday 4/30: attend talk by Zale Young '20, 12:45 in MBH 104 -- pizza at 12:35
e Homework 9 due Thursday 5/1: implement a hash table with linear probing to handle

collisions
e Lab 9 Friday 5/2: Graph Algorithms
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