a \J

CSCI 201: Data Structures
Spring 2025

Middlebury

Lecture 11M: Graphs

Goals for today:

e Learn whatis a graph, edge, vertex/node, path, directed edge, cycle; learn what weights
represent; what is the degree of a node.

o Different types of graphs: directed, complete, connected.

e Represent a graph using an adjacency matrix.

e Represent a graph using adjacency lists.

e Represent graphsin Java.

: ®

. .O
8 .

Terminology: a graph consists of two sets: nodes (a.k.a. vertices) and edges

Qo\gc el ¢
inct'cltw*' +o
Noedes c and 4

Nodes ¢ o L d
ave a.clstw—t'

>
o

o\cﬁrﬁe.(d) = Y
degree (F) = |
b—d-€e—g s
o Ea-l—l/\

e Two vertices are adjacent if there is an edge between them. The edge is incident to both vertices.

e The degree of a node is the number of edges incident to it.

e Apath is a sequence of nodes py, po, ..., pr where thereis an edge (p;, pi+1) in the set of edges. No edge is
repeated. A simple path has no repeated vertices.

e Acycleis a path where the first and last node are the same.

G(ros?\f\ & = (V,E>

VeV ..‘.e)(§C+ \l ; e,d,g&. QG-t 6

a s

a—|0~o\—4
- et

a \J

Edges can also have a direction

Is there a cycle in this graph? N U

b
O\‘Z r\a' This has = cyele
—

a \J

Edges can also have weights

o
@7 10
PO

What can weights be used for?

Aistan ces behnresn woldes

CoSTs
Flows behatoan Yo A2S

We might want to calculate the shortest path between two nodes

we 1'5\/\+9 =
AstancesS
(4;"s)
betuares
nodea g

a \J

A graph is connected if there is a path between every pair of nodes

qeaph

has —
2

o ~0

Conn eck-t\
Co W\Pomdo('t"j

y\o'l" Conne C"}eo(

Strongly connected (for directed graphs): every pair of nodes is
reachable by a path

Which edge can we add to make this graph strongly connected?

We have seen graphs before! A tree is a special type of graph .
&£ no Cyclcs = OC(C 'YC\\C,

A tree is a connected, undirected graph without any cycles.

cooted nea

N
AN

Trees can be rooted or free.

J 20
/G%
7

@

—Fra unnom W

) DAG\—” - A"\rec-k_l auc\/c“c, 5(*0\?\'\

Complete graph: every pair of nodes is connected by an edge

VS

Elowxad‘ 9M“>l’\ . LAawn b-l ‘Lm'*"’l

tn 2D wth no edae cyoss u'an

10

2D Representing graphs: adjacency matrix and adjacency lists

ovrraly L~ 90°h for dense 9vmphs

ad':acencz mateix
eachh | | of edge
twh"j, "W o Vv

Representing directed graphs (also with edge weights)

a‘\';oscev\c;[=y
(node, w((gk’f)

o

&d';ac‘e necy wm ‘\'V‘i)(

afe t @ 1 © o > T(b,%), (4,1)]
v|Io © @ 2 o b [(A:Z)’l ’

c | o o o 3% O o £ (4,3)1

Adle 0 0 o % A —> (e, 5)]

e|] o 0o © © O e

L)

12

Implementing this in Java using adjacency lists (or adjacency sets)

1 public class Graph<Node> {

2

3 // adjacency lists: node —> set of adjacent nodes
4 private HashMap<Node, HashSet<Node>> adj;
0

6 public Graph() {

7 adj = new HashMap<>();

8 }

9

10 public void addEdge(Node a, Node b) {

11 if ('adj.containsKey(a)) {

12 adj.put(a, new HashSet<>());

13 g

14 if ('adj.containsKey(b)) {

15 adj.put(b, new HashSet<>());

16 }

17 adj.get(a).add(b);

18 adj.get(b).add(a);

19 }
20
21 public boolean hasEdge(Node a, Node b) {
22 // or adj.get(b).contains(a) since undirected
23 return adj.get(a).contains(b);
24 '}
25
26 Set<Node> getNodes() {
27 return adj.keySet();
28}
29 }

public static void main(String[] args) {
Graph<Character> graph = new Graph<>();

graph.addEdge('a', 'd');
graph.addEdge('b', 'd');
graph.addEdge('c', 'd');
graph.addEdge('d', 'e');
9 graph.addEdge('e', 'f');
10 graph.addEdge('e', 'g');

1
2
3
4 graph.addEdge('a', 'b');
5
6
7
8

12 System.out.println(graph.hasEdge('b', 'a'));
13

14 System.out.println(graph.getNodes());

15 }

Brainstorm: how can we design a
getEdges () method?

{a,bg undivecld edge
(x,b) directed edge.

{257, §a,d,§bd% c,d3 §4ed fe.f} fe,03¢

a s

13

Retrieving the set of edges

Maybe use a helper Edge class?

<Node> {
HashMap<Node, HashSet<Node>> adj;
HashSet<Edge> () 1
HashSet<Edge> edges <>();
(Node u adj.keySet()) A
HashSet<Node> Llist adj.get(u);
(Node v : list) A
10 edges.add(new Edge(u, v));

\
J

edges;

cla

P
P

1
2
3
4
5 p
6
7
8 }
9

}

cl

ss Edge {
ublic Node u;
ublic Node v;

ublic Edge(Node u, Node v) {
this.u = u;
this.v = v;

ass Edge {
public Node u;
public Node v;

public Edge(Node u, Node v) {
this.u = u;
this.v = v;

eqvals ()

public int hashCode() {
return 31 * Math.min(u.hashCode(), v.hashCode())
+ Math.max(u.hashCode(), v.hashCode());
}

@Override
@SuppressWarnings("unchecked")
public boolean equals(Object otherObj) {
Edge otherEdge = (Edge) otherObj;
return (u.equals(otherEdge.u) && v.equals(otherEdge.v)) ||
(u.equals(otherEdge.v) && v.equals(otherEdge.u));
}

public String toString() {
return "(" + u.toString() + ") —— (" + v.toString() + ")";

}

14

Additional notes:

e Next class Wednesday 4/30: attend talk by Zale Young '20, 12:45 in MBH 104 -- pizza at 12:35
e Homework 9 due Thursday 5/1: implement a hash table with linear probing to handle

collisions
e Lab 9 Friday 5/2: Graph Algorithms

15

