
CSCI 201: Data Structures

Spring 2025

Lecture 10M: Hash Tables (Part 1)

1
 

Goals for today:

Solve problems using Java's built-in HashSet and HashMap (which are built using a hash table).

Write our own hashCode and equals methods for our custom types in order to use them with Java's

built-in HashSet and HashMap.

Use a hash function to determine the index of a key in a hash table.

Practice with bitwise operators.

2
 

One possible solution:

public class PointTracker {
 boolean[][] visited;

 public PointTracker() {
 visited = new boolean[GRID_SIZE][GRID_SIZE];
 for (int i = 0; i < GRID_SIZE; i++) {
 for (int j = 0; j < GRID_SIZE; j++) {
 visited[i][j] = false;
 }
 }
 location = new Point(0, 0); // or in middle
 move(location);
 }

 public boolean haveBeenHere(Point point) {
 return visited[point.x][point.y];
 }

 public void move(Point newLocation) {
 visited[newLocation.x][newLocation.y] = true;
 location = newLocation;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

but...

Is there a way to use less memory?

4
 

Implementing a hash table for custom types.

Override public int hashCode().

To add(K key) or put(K key, V value):
1. Evaluate key.hashCode() to get an integer.

2. Use the result to determine the array index.

3. Place item in bucket at array index.

To get(K key):
1. Evaluate key.hashCode() to get an integer.

2. Use the result to determine the array index.

3. Retrieve item in bucket at array index.

But as we said, there may be collisions (or multiple keys that map

to the same bucket). We need to iterate through items in the

bucket to find the item that is associated with the key:
So we need to find the item with a key (i.e. check key equivalence).

Requires overriding public boolean equals(Object otherObj).

Load factor: .
: number of items (size).

: number of buckets (length of table array, i.e. capacity).

α = n/m

n

m

Higher : potentially go through many items in one bucket to search.α

Low means wasted memory.α

Resize the table if load factor is outside acceptable range.
And be sure to rehash items (recompute table indices).

class Point {
 public int x;
 public int y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override
 public int hashCode() {
 // TODO how should we hash two integer values?
 }

 @Override
 public boolean equals(Object otherObject) {
 Point otherPoint = (Point) otherObject;
 return (otherPoint.x == x) && (otherPoint.y == y);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

9
 

