a \J

Middlebury

CSCI 201: Data Structures
Spring 2025

Lecture 10M: Hash Tables (Part 1)

Goals for today:

Solve problems using Java's built-in HashSet and HashMap (which are built using a hash table).
Write our own hashCode and equa Ls methods for our custom types in order to use them with Java's
built-in HashSet and HashMap.

Use a hash function to determine the index of a key in a hash table.

Practice with bitwise operators.

Consider this problem:

e Suppose we start at some pointin a grid and can move left, right, up or down (no diagonal movement).
e We can only step into a grid point that we have not yet visited and cannot step out of bounds of the grid.
e OpenPointTracker. java and brainstorm how you would design a solution for the

boolean haveBeenHere(Point point) method (withouta Set orMap).

OOOOOOOOOE Eack Hevahou :
00/0/0/0/0/0/0/0/C NNETNINNIN
0/0/0/0/0/0/010/010 NN
0/0/0/0/0/0/0/0/00 .
OOOOO@OOOE) = °vt of bounds?
% — VisiHed here
lVW_Ai 1
0/0/0/0/0/0/0/0/0/c NN
000000010100 MLl
OOOOOOOOOO

One possible solution:

but...

1 public class PointTracker { IlIIiIIiIIiIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
2 boolean[11] visited; B e e T P S
5 R R R R R R R R R R R R R R R R R R R SRR RO
4 public PointTracker() { DIIIIIIIIIiIIIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
5 visited = new boolean[GRID_SIZE] [GRID_SIZE]; DIlIIIIIIIIIIIIIIIIIiIIiIIiiIiiiiiiiiiiiiiiiiiiou
6 for (int i = @; i < GRID_SIZE; i++) { IlIIIIIiIIiIIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
7 for (int j = 0; j < GRID_SIZE; j++) { IlIIIIIIIIIIIiIIiIIiIIiIIiiiiiiiiiiiiiiiiiiiiiou
8 visited[il[j] = false; IIIIIIIIIIIIiIIIIIIiIIiIIiiiiiiiiiiiiiiiiiil
9 ¥ LlIIIIIIIIIiIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
10 } IlIIIIIIiIIiiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiio
11 location = new Point(@, @); // or in middle DIlIIIIIIIiIIIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiioc
12 move(location); IlIIIIIiIIiIIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
13} T S S
14 IIIIIIIIIIIiIIIIIIiIiiiiiiiiiiiiiiiiiiiiiiiiiis
15 public boolean haveBeenHere(Point point) { LIIIIIIIIIIIIIIiiIiiiiIiiiiiiiiiiiiiiiiiiiiiiiioc
16 return visited[point.x] [point.y]; LlIIIIIIIiIiIIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiioq
17} IlIIiIIiIIiIIiIIiIIiiiiiIiiiiiiiiiiiiiiiiiiiiiou
18 LlIIIIIIIIIIIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiio
19 public void move(Point newLocation) { e TS
20 visited[newLocation.x] [newLocation.yl = true; LIIIIIIIIIIIIIiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiio
21 location = newlocation; DIlIIIIIIIiIIiiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiou
22} IlIIIIIIIiIIIIiiIiiiiIiiiiiiiiiiiiiiiiiiiiiiiiou
53 3 mmmumnnuniininiIniIIIIIIIIIIIIIIIIIINNNN

Is there a way to use less memory?

a \J

We only want to keep track of points we've visited.

ArrayList of Points?

[T T TTTTT]

- o dd new (oCos""\'O'v\ O(l)
— VIS ‘O-uCON7 O(# of Fo;A+$ J4\S l-kl)

But we also want to be able to (quickly) look up if we've visited a point.

@ Idea: use an array, but find a way to map items to array indices.

e
e ecaes)

Introducing hash functions: map items (keys) to an array index.

Imagine our keys are integers (we'll come back to custom types like Po1nt later).

Example: storing student ID to name.

e Green onion: 00837194 .
e Fire lizard: 00833462 ©

e Blue turtle: 00749132

e Electric mouse: 00678395 4
e Clam: 00889321 ¢

e Fox: 00765432 ©

e Sleepy panda: 00812493 S
e Radish: 00754639 ?-

T Asa | hugc.
array, YSe 1D
as ivxl-ey

Saber et [TTTTIITH
Map D 4o

X O | 2 3 S 6
index wiHA i 1

, funchon, e’ 1o % B

Hash functions: map the universe of keys to a restricted range
(e.g. the size m of an array).

What makes a good hash function?

e Deterministic: h(k) should always return the same value.
e Fastto evaluate: if it's expensive (e.g. log n) then we don't gain anything by using a table.

The challenge is that we generally don't know the distribution of the keys.

Example: division method (h(k) = k mod m).

m k h(k)

11 25 3

11 1 |

11 17 g

13 133 73

13 7 P 5122 M

4

ce T [T (TTTTTITT]

Good rule of thumb (for division method) is that m is a

prime number not too close to a power of 2. K IDUC)(C." h Dl A iV\ 9 >
Keys 7

a \J

Concern: what if multiple keys map to the same array index?

COLLISION
m k h(k)
11 25 3
111 T map o Same

11 17 6 / indeye

11

HENEEENCEEEEE

Implementing a hash table for custom types.

e Overridepublic int hashCode().
e Toadd(K key) orput(K key, V value):

1. Evaluate key . hashCode () to get an integer.
2. Use the result to determine the array index.
3. Place item in bucket at array index.

e« Toget(K key):

1. Evaluate key. hashCode () to get an integer.
2. Use the result to determine the array index.
3. Retrieve item in bucket at array index.

e But as we said, there may be collisions (or multiple keys that map

to the same bucket). We need to iterate through items in the

bucket to find the item that is associated with the key:

= So we need to find the item with a key (i.e. check key equivalence).
= Requires overridingpublic boolean equals(Object other0Obj).

e Load factor:a = n/m.

= n:number ofitems (size).

= m:number of buckets (length of table array, i.e. capacity).

= Higher a: potentially go through many items in one bucket to search.
= | ow a means wasted memory.

e Resize the tableif load factoris outside acceptable range.

= And be sure to rehash items (recompute table indices).

[ITTTTTTTTIT]

=
CLVWoLoNOUTR,WNPEF

[g)
U WN R

16
17
18
19 }

class Point {

public int x;
public int vy;
public Point(int x, int y) {

by

this.x = Xx;
this.y = vy;

@Override
public int hashCode() {

}

// TODO how should we hash two integer values?

@Override
public boolean equals(Object otherObject) {

by

Point otherPoint = (Point) otherObject;
return (otherPoint.x == x) && (otherPoint.y == y);

A detailed look into how Java does this (OpenJDK).

https://github.com/openjdk/jdk/blob/7b0f273e37625461baa333a3ef20fbbd93647243/src/java.base/share/classes/java/util/HashMap.java#L320

XoR

1 /%%
2 * Computes key.hashCode() and spreads (XORs) higher bits of hash
3 * to lower. Because the table uses power-of-two masking, sets of
o ‘ ' O ‘ 4 * hashes that vary only in bits above the current mask will
5 * always collide. (Among known examples are sets of Float keys
6 * holding consecutive whole numbers in small tables.) So we
‘ ‘ o O ‘ 7 * apply a transform that spreads the impact of higher bits
8 * downward. There is a tradeoff between speed, utility, and
9 * quality of bit-spreading. Because many common sets of hashes
o o O 10 * are already reasonably distributed (so don't benefit from
l ‘ 11 * spreading), and because we use trees to handle large sets of
12 * collisions in bins, we just XOR some shifted bits in the
13 * cheapest possible way to reduce systematic lossage, as well as
14 * to incorporate impact of the highest bits that would otherwise
15 * never be used in index calculations because of table bounds.
16 %/
17 static final int hash(Object key) {
18 int h;
19 return (key == null) ? @ : (h = key.hashCode()) ~ (h >>> 16);
20 }

Table (array) size is always a power of 2.
Table index computed from hash(key) & (m — 1) where m isthe capacity (table length).
” means bitwise XOR (exclusive OR): e.g. #1101 ~ 11001is

>>> means unsigned right shift (here, by 16 bits): e.g, 01101010 >>> 4is

w

& means bitwise AND: e.g. 00110 & 111is

In your Terminal, type jshell and use Integer.toBinaryString to try these out! Ctr1-D to exit.

000001\

10

a \J

What exactly is hash(key) & (m - 1)doing?

Remember that Java (OpenJDK) picks the table size to be a power of 2.

e Example:m = 16is 10000,som — 1is | I | [

+ Whatis 15 & 157 Iy % I = (el = s

e Whatis 73 & 157 q

LL’OOO:] ()
ool oo |
Oo0pl 00|
L———f

9

11

Exercise: compute the hash table indices for the
following Points (using Java's technique).

static final int hash(Object key) { class Point {

1
2 int h; public int x;
3 return (key == null) ? public int y; |
4 ® : (h = key.hashCode()) ~ (h >>> 16); p“‘gﬁg.z%nifmt X, int y) {
5 } thiS.y =Y,
}
@Override

e Starting with a tablesizem = 16.

e Tableindex=hash(key) & (m - 1).
e Point1:(1,1)

e Point 2: (12345, 678)

hasheode i | rigWtshift [h (o [6) &) '
Porel exty | W06 -Fiml(kasln) teble mdex L& (¢

(1) 57 O 22 O ..0c00 & I}

(2345638)| 283373 S 292%4L% | @ -..100D & (Il
(Foooo, 42)| 21300y | 3% | auzoo(([1] 1ol moIul

public int hashCode() {
return 31 x X + y;

}

@Override
public boolean equals(Object otherObject) {
Point otherPoint = (Point) otherObject;
return (otherPoint.x == x) && (otherPoint.y == y);

= R R
OUVVAEUWNEFEOOOVOONOULTESEWNE

=
o o LN

a s

12

Exercise: compute the hash table indices for the
following Points (using Java's technique).

1 static final int hash(Object key) { 1 class Point {
2 int h; 2 publ}c int x;
3 return (key == null) ? 3 public int y; .
4 @ : (h = key.hashCode()) ~ (h >>> 16); s HEE T IN SR
5} 6 this = :
@ Y Y
a guick way to Compyte alie

9 @Override

e Starting with a tablesizem = 16. o 10 public int hashCode() {
QTableindexzhash(key) & (m - 1). [B }return 31 % X + y;

13

e Point 1: (1 1) 14 @Override
. 15 public boolean equals(Object otherObject) {
1 . 16 Point otherPoint = (Point) otherObject;
. POlnt 2 (12345’ 678) 17 return (otherPoint.x == x) && (otherPoint.y == y);
18 }
19 }

-H&%‘\MAY +able s(ze s ?owd' of 2
- hash is designed 4o sprend Keys acvoss byvckets
» 6 'I'Akinj hi gher bits
kA (h 7 H.) 1S "‘"“."3 Mg\'\ and lows order
bits do LeHer gpml 1w Febh\e

ars

12

Additional notes:

e For more hash functions, see: https://en.wikipedia.org/wiki/List_of_hash_functions

e Lab 7 due tonight.

e Homework 8 due on Thursday 4/24: use a T reeMap to solve a problem and then implement
a DIY-version based on what your algorithm needs.

e Next class: how can we handle collisions?

13

