CSCI 201: Data Structures
Spring 2025

ars

Middlebury

Lecture 4W: Sorting

Goals for today:

e Analyze the runtime of sorting algorithms including selection sort and insertion sort.
e Describe the steps in bucket sort and radix sort.

o Differentiate between the best, worst and average case runtime of an algorithm.
o |dentify properties of sorting algorithms: in-place, stable.

e Customize how sorting is done for our own objects.

e Pair program to implement a sorting algorithm!

Why is sorting important?

@ TITLES an NAMES |=’ COLLABORATIONS
Movie X Animation X Keyword: "pixar" X

(Action-S) CAdventure~30) Animation X
(D oooooo tary'1> (Drama ~ 12) (Family~30)

Fantasy - 20 Film-Noir - 0 Game-Show - 0 Determined to make her own path in life, Princess Merida defies a custom that brings chaos to her kingdom. Granted one
wish, Merida must rely on her bravery and her archery skills to undo a beastly curse.

D"A";
S 5. Brave

SR 2012 1h33m PG ®
l *7.1(450K) tRate [XJMetascore

Mystery - 2 News - 0 Reality-TV - 0
romance 2

Talk-Show - 0 Thriller - 0 War -0 Western - 0

6. The Good Dinosaur
Bl 2015 1h33m PG ®
B 6.7 (130K) trRate [Metascore

In a world where dinosaurs and humans live side-by-side, an Apatosaurus named Arlo makes an unlikely human friend.

Exclude
Z L Documen tar Short Ee
o - MV 7. nside 0
Y \ . Inside Out
Awards & recognition v 9 Bl 2015 1h35m PG @
A9 * 8.1 (831K) wrRate [Metascore
Page topics V. S 5
After young Riley is uprooted from her Midwest life and moved to San Francisco, her emotions - Joy, Fear, Anger, Disgust and
Sadness - conflict on how best to navigate a new city, house, and school.
Companies v
. +a
Instant watch options v 1% ¢ 8.ABugsLife
0%
/ ; / Z SRR 1998 1h35m G ®
US certificates v I 0 %7.2(320K) trRate Metascore
035
Color info v A misfit ant, looking for "warriors" to save his colony from greedy grasshoppers, recruits a group of bugs that turn out to be

ars

a \J

Refresher exercise from last class: determine T'(n) (an expression for the
number of operations performed by the following algorithm), then provide a

big-O bound on T'(n).

int 1 = n;
while (i1 > 1) {
1= 1./ &

}

Coun+ ;#: A‘I\fl.9).5_l!\§ A

letr n= %2

S o\'l‘f\‘;“‘“\9

——

.l'.':n::g?_ nzzd

V, = 1§

"z =3 4= logyn = T(n)
/2 =4 r

The Collections framework has built-in methods to sort.

)
)

{ Collection<E>

i e
=1 3

[AtrlyLilt<E>J EinkodLilt<E>] [TreeSet<E> } [HashSet<E>] [Trocmpd(,\b] [Hashlhp<l<,v>]

public static void sort(List<T> list)

Sorts the specified list into ascending order, according to the natural
ordering of its elements. All elements in the list must implement the

,}g)’j Comparable interface.

This sort is guaranteed to be stable: equal elements will not be

reordered as a result of the sort. Lf"L,,‘Z’ l 9 t,?,/Z,L{

a s

The Arrays class also has built-in static methods to sort which
can be used for fixed-size arrays.

static void sort(double[] a, int fromIndex, int tolIndex)

static void sort(double(] a)
« O Sorts the specified array into ascending numerical order.

Sorts the specified range of the array into ascending order.

static void sort(float[] a)

‘ i Sorts the specified array into ascending numerical order.
k{(static void sort(float(] a, int fromIndex, int toIndex)

Sorts the specified range of the array into ascending order.

static void sort(int([] a)
Sorts the specified array into ascending numerical order.

static void sort(int[]) a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

static void sort(long[] a)
Sorts the specified array into ascending numerical order.

static void sort(long[] a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

static void sort(Object[] a)
Sorts the specified array of objects into ascending order, according to the natural ordering of its elements.

static void sort(Object[] a, int fromIndex, int toIndex)
Sorts the specified range of the specified array of objects into ascending order, according to the natural ordering of its elements.

static void sort(short[] a)
Sorts the specified array into ascending numerical order.

static void sort(short[] a, int fromIndex, int toIndex) a
Sorts the specified range of the array into ascending order. +
static <T> void sort(T[] a, uper T> ¢)

Sorts the spdf@TATTEY 01 objects according to the order indyced by the specified comparator.

static <T> void sort(T[] a, int fromIndex, int toIndex uper T> c)

Sorts the specified range of the specified arra ording to the order induced by the specified comparator.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

a \J

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place itin its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

\>.
{r_;’ﬂ,’$8,§',44”_—l]252
L —>
1|4t 32,5 ut 3] 268

x 3,)%, ¢, 44,262

a \J

Sorting Algorithm #2 (Insertion Sort):

Main idea: Repeatedly insert the next element into those that are already sorted.

Maintain sorted elements on the left (of some imaginary divider) and unsorted
elements on the right.

1. Look at first element in unsorted part (to the right of divider).
2. Iteratively swap this into the correct place in the sorted part.
3. Move the divider to the right (by one) and go back to Step 1.

f
53 G857, 5, 3, 1,36, 263

1 1
$3, 04 |[3%) ¢, 47 |, %%, 263
!
§ 3 V3g t{,‘ 47,1, %6, 262

$3, S, 38, 44 [y, 1, %k, el

|

Possible implementation of InsertionSort. java.

public static void sort(int[] items) {
for (int i = 0; i < items.length; i++) {

int | = i

while (j > 0 && items[j] < items[j - 1]) {
// swap 1items at j and j - 1
int tmp = items[j];
items[j] = items[j - 11;
items[j — 1] = tmp;
i

Runtime analysis of selection and insertion sort.

n=]-kms l&g"l““/\.

// selection sort
public static void sort(int[] items) {
for (int i = 0; i < items.length; i++) {
int minValue = items[i];
int minIndex = 1i;

for (int j = i + 1; j < items.length; j++) {

if (items[jl{<)minvalue) {
minValue = 1tems[j];
minIndex = j;
}
}
items[minIndex] = items[i];
items[i] = minValue;

}
} i Cowxpd‘iSaMS
I= 0 n-1
f=1 * n-2
. - = “(“-‘)
) Z

i=n-2 1
|=n-| ‘-O - O(nz')

awer49e}
Wor 54

a s

// insertion sort
public static void sort(int[] items) {
for (int i = 0; i < items.length; i++) {
int j = i;
while (j > 0 && items[j){<)items(j - 11) {
// swap items at j and J - 1
int tmp = items[j];
items[j] = items[j - 1];
items[j - 1] = tmp;

}}J-—:
3
7F C.oMFAN'sthS
i= (@] O 2
i=z1 +1 ofn)

g : woo$+co~se

0\‘!0‘&96

i=n-2 tn-2

)=n-| n—I

f slready sorled, best case
O (n

What if we want to compare our own custom objects?
We have two options.
N need 4odefine public wl COMFAmTofT' o‘f"\«")

This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred to as the class's
natural ordering, and the class's compareTo method is referred to as its natural comparison method.

need 4o defing ?J»l\“c. il R et (T’df} |)T °LJZ

public interface Comparator<T>

A comparison function, which imposes a total ordering on some collection of objects. Comparators can be passed to a sort method
(such as Collections.sort or Arrays.sort) to allow precise control over the sort order. Comparators can also be used to control the
order of certain data structures (such as sorted sets or sorted maps), or to provide an ordering for collections of objects that don't
have a natural ordering.

The ordering imposed by a comparator ¢ on a set of elements S is said to be consistent with equals if and only if c.compare(el,
e2)==0 has the same boolean value as el.equals(e2) for every el and e2 in S.

10

implementsing compareTo(Movie otherMovie)
within the Movie class so it can be Comparable.

class Movie implements Comparable<Movie> { // make sure to import java.util.x

public
public
public

public

this.
this.
this.

¥

public

String title;
int year;
double rating;

Movie(String title, int year, double rating) {
title = title;

year = year;

rating = rating;

T (Y ‘JQ
int compareTo(Movie otherMovie) { | AE;\ ﬂ'C

if (rating < otherMovie.rating) . .
return -1; W ‘.‘—L_“n

else if (rating > otherMovie.rating)
return 1;

return 0; CL¢§$

}

public

et

String toString() {

return title + " (" + year + "), rating = " + rating;

}
}

11

implementsing compare(Movie moviel, Movie movie2)

outside the Movie class to create a Comparator.

Makes o} ecSizv ""DSNE‘)'JI\ L\(l’\«m

class MovieYearComparator implements Comparator<Movie> { // make sure to import java.util.x
public int compare(Movie moviel, Movie movie2) { -~'

if (moviel.year < movie2.year)
return -1;

else if (moviel.year > movie2.year)
return 1;

3 return 0; .__J

} —

class MovieTitleLengthComparator implements Comparator<Movie> {
public int compare(Movie moviel, Movie movie2) {
if (moviel.title.length() < movie2.title.length())
return -1;
else if (moviel.title.length() > movie2.title.length())
return 1;
return 0;

by
}

// Somewhere else in the code (possibly a PSVM) ...
// Create a Comparator<T> object and pass it to sort:
Arrays.sort(movies, new MovieYearComparator()); // sort by year

e

N 2 Aifse re:(—‘
l._/ mov(¢
CQIWPM\'A‘OV‘S

Arrays.sort(movies, new MovieTitleLengthComparator()); // sort by title length

12

Sorting Algorithm #3 (Bucket Sort):

Main idea: put items in buckets, sort each bucket, re-assemble.
1. Set up some number of buckets k. {
2. Scatter all n items into the appropriate bucket. Z-(, ql 7: 3, H; |"l', G, '2, 13) | Gi

3. Sort each bucket.
4. Gather items from buckets into sorted array. K ~5 bUCkCTS

o-14 J5-19 20-21

(3) foe] [rin] [roe] [

Sor"" CACL\ de“‘l—

(0~14 (s-19 20 -2
7 [62] [n] [ion] [z
ja e
£3.6,3,9,12,4,161%,2! 1238 N

a7s 13

Sorting Algorithm #3 (Bucket Sort):

Main idea: put items in buckets, sort each bucket, re-assemble.

1. Set up some number of buckets k.

2. Scatter all n items into the appropriate bucket.
3. Sort each bucket.

4, Gather items from buckets into sorted array.

Notes:

e Does not require items to be comparable
(unless using comparison-based sorting for each bucket).
e Works well if the input data is uniformly distributed
(i.e. buckets evenly sized).
e Disadvantage: how to determine number of buckets k?
(need information about input data).
e Worst-case runtime: O(n?).
e Average-case runtime: O(n + k).
e Notin-place, but stable.

ars

14

a \J

Sorting Algorithm #4 (Radix Sort): max 4 A"ﬁ +s K= 3
Main idea: similar to bucket sort, use digits to make buckets.

1. Pick a radix (base for each digit; we'll use 10). {/70,45', 7 5', 90"2.’ 302 / Z 7 & 6}

2. For each digit d (starting from least significant digit):
1. Make 10 empty buckets for this digit's possible values (0 - 9). { ? o
2. Get the d*® digit of each item l [° "I'S" 07‘5' ,0 qo, 002 BDZ ODZ,0 6 éi
and put into the appropriate bucket. / / /
3. Go back through all buckets and put items
from each bucket back into the original array.

poss | __ % pass 2:_X_ pass 3:6__
O 130, 090 b 002,802,007 1 0;7',°°2,0‘PT,066,07»5',090
1 (70
2 002,802,002 & 2
3 3 2
o ;O‘ts‘ o
S 045 0
6 oet - b 066 ?
;7s ;17—0,0?—3‘ 7
2 3070
9 9 090 ? ’

15

Sorting Algorithm #4 (Radix Sort):

Main idea: similar to bucket sort, use digits to make buckets.

1. Pick a radix (base for each digit; we'll use 10).
2. For each digit d (starting from least significant digit):

1. Make 10 empty buckets for this digit's possible values (0 - 9).
2. Get the d*™ digit of each item

and put into the appropriate bucket.
3. Go back through all buckets and put items

from each bucket back into the original array.

Notes:

Does not require items to be comparable.

Worst-case runtime: O(n - k) (k is the maximum number of digits).
Average-case runtime: O(n - k).

Not in-place, but stable.

16

See you Friday!

e InLab 4 and Homework 4 we'll practice with implementing some of these sorting algorithms.
e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week
and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

8 s 17

https://middcs.github.io/csci201s25/lab04
https://middcs.github.io/csci201s25/homework04
https://go.middlebury.edu/noah
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

