
CSCI 201: Data Structures

Spring 2025

Lecture 4W: Sorting

1
 

Goals for today:

Analyze the runtime of sorting algorithms including selection sort and insertion sort.

Describe the steps in bucket sort and radix sort.

Differentiate between the best, worst and average case runtime of an algorithm.

Identify properties of sorting algorithms: in-place, stable.

Customize how sorting is done for our own objects.

Pair program to implement a sorting algorithm!

Why is sorting important?

2
 

Possible implementation of InsertionSort.java.

public static void sort(int[] items) {
 for (int i = 0; i < items.length; i++) {
 int j = i;
 while (j > 0 && items[j] < items[j - 1]) {
 // swap items at j and j - 1
 int tmp = items[j];
 items[j] = items[j - 1];
 items[j - 1] = tmp;
 j--;
 }
 }
}

8
 

Sorting Algorithm #3 (Bucket Sort):

Main idea: put items in buckets, sort each bucket, re-assemble.

1. Set up some number of buckets .

2. Scatter all items into the appropriate bucket.

3. Sort each bucket.

4. Gather items from buckets into sorted array.

Notes:

Does not require items to be comparable

(unless using comparison-based sorting for each bucket).

Works well if the input data is uniformly distributed

(i.e. buckets evenly sized).

Disadvantage: how to determine number of buckets ?

(need information about input data).

Worst-case runtime: .

Average-case runtime: .

Not in-place, but stable.

k

n

k

O(n2)
O(n + k)

14
 

Sorting Algorithm #4 (Radix Sort):

Main idea: similar to bucket sort, use digits to make buckets.

1. Pick a radix (base for each digit; we'll use 10).

2. For each digit (starting from least significant digit):
1. Make 10 empty buckets for this digit's possible values (0 - 9).

2. Get the digit of each item

and put into the appropriate bucket.

3. Go back through all buckets and put items

from each bucket back into the original array.

Notes:

Does not require items to be comparable.

Worst-case runtime: (is the maximum number of digits).

Average-case runtime: .

Not in-place, but stable.

d

d
th

O(n ⋅ k) k

O(n ⋅ k)

16
 

See you Friday!

In and we'll practice with implementing some of these sorting algorithms.

Reminder that Noah () and Smith () have office hours throughout the week

and the 201 Course Assistants have drop-in hours in the late afternoons/evenings ().

Lab 4 Homework 4

go/noah go/smith

go/cshelp

17
 

https://middcs.github.io/csci201s25/lab04
https://middcs.github.io/csci201s25/homework04
https://go.middlebury.edu/noah
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

