Middlebury

CSCI 201: Data Structures
Spring 2025

Lecture 3W: Java Collections

ars

Goals for today:

e Use javac and java directly!

e No more new Java syntax!

e |dentify the difference between an Abstract Data Type and a Data Structure.

e UseanArraylList to store multiple items (of the same type), in which the
number of items can increase/decrease based on the needs of your algorithm.

e Use a HashMap to store key-value pairs.

ars

First, let's unpack what the VS Code play button is doing.

Open a Terminalin the Lecture06 folder:

username@computer$ javac CompileThenRunWithArguments.java

username@computer$ java CompileThenRunWithArguments

Now try:

username@computer$ java CompileThenRunWithArguments x y c¢ 123 MikeWazowski

public class CompileThenRunWithArguments {
public static void main(String[] args) {
System.out.println("Here's what was passed to the program:");

for (int i = 0; i < args.length; i++) {
System.out.printin("Argument [" + i + "]:

+ args[il);

if (args.length == @) System.out.println("Nothing!");
b
¥

ars

Motivating dynamic storage

How would you keep track of which Pokémon a player has?

How would you organize songs in a music playlist?

1 Blank Space (Taylor's Version) 1989 (Taylor's Version)

/i Taylor Swift

2 2 € Love Story (Taylor’s Version)

Love Story (Taylor’s Version
Taylor Swift ¥ Ty)

3 '3 |1 Can Do It With a Broken Heart
o B Taylor Swift

4 . Cruel Summer
;,4) Lover
Taylor Swift
5 B 2y | Knew You Were Trouble (Taylor's V...

3 5 Taylor Swift

THE TORTURED POETS DEPART...

Red (Taylor's Version)

6] Look What You Made Me Do .
= . reputation
¢ Taylor Swift

These tasks would be a bit hard to do with fixed-size arrays (directly).

ars

Motivating dynamic storage

Imagine we had a utility to keep track of this - what methods would you like?

MA(\'}‘CW\) oppend Hom +o end of Ust

IOV (i ndex) * revmove (ewm oot $?eu"Fx'c_ index

Qe'(' (im\ex)_ D ovetrewe idewm at Tndex
iv\al-e}(of (|.|-ew\\ s Lrvd index of e

jieeU L oof ifems Stored
Eor‘}(‘) © Sort jdewas

There are tools (built into Java) to help with this.

A collection represents a group of objects, known as its elements.

(Collection<E>] i
specifey |] interfoces
method$ & ! | | /
odd |
ete ImF(cVV\{m-t_
\ 4 \ 4 Y l Y l J sPecg Of

{ArrayList<E>} [LinkedList<E>] [TreeSet<E>] [HashSet(E)] [TreeMap<K,V>] [HashMaIKK,‘DJ ,n‘;ep‘&ce s

e Abstract Data Type (ADT): formal description of behavior of data type, e.g. a
List allows accessing item at a specified index (but implementation can vary).

e Data Structure: concrete organization/representation of data (implements spec
defined by an ADT). Example: ArrayList.

Okay, let's take a shot at a L1st ourselves.

We'll design our own implementation of a L1st called DIYList.

But first, we should check the List spec:
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Let's focus on methods to: add add add

— | B aedl BN By ??
1. Constructanempty DIYList. i D ~ L
2.add anitemtoaDIYList. no mMmoré
3. remove anitemfromaDIYList. spoce

4. Retrieve the number of items (size)inaDIYList.
5.cleartheitemsinaDIYList.

—>)ncrease capocC ;’})'

@ Idea: use a fixed-size array that has enough space (capacity) to hold our items.

If we need more space, just allocate a new larger array and copy items!

Adding (add) anitemtoaDIYList.

Without loss of generality, imagine our DIYL1st can only hold String items.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void add(String item) {
// Is there enough space (capacity, i.e. items.length)?
// If not, make more space and copy the old items.

// Place item in items[size] and increment size.

}
}
add a add o s
a 1Tem
rd LA 4L L = —|n|n
caracii'y: r 2 carqci'l'yt z car‘cii- i X l.nSv#\"cienT
size: O size: | size: 27 capacity add
- dovble
+he -
CAPA:I"';:;Y . ‘ . . .

Removing (remove) an item froma DIYL1ist.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void remove(int index) {
// if index is beyond the index of the last item, nothing to do —> return

// replace the item at index with the item at index + 1

// replace the item at index + 1 with the item at index + 2
// replace the item at index + 2 with the item at index + 3
// «.. until all items after the index have been shifted left

// decrement size (because we removed an item)

hs
}
0 | 2 3 4 c 6 7
c‘PacH’:S
N BN NE BE BE BR size= 3
remove (3) L L (_J[_J[_J
c¢P¢CH7:8
m giN HE BR size=b6

wse a Jor loop, S'hr'Hnj of index of jdem
‘o be rewoved, until size .

In each iferation set Hems[i] = items [i41]

Clearing (clear) theitemsinaDIYL1ist.

public class DIYList {
int size; // current number of items actually stored

String[] items; // capacity is items.length

public void clear() {
// set all items to null

// set size to 0

2
}
(0] I A 2 4 C 6 +
CAPac;'ly:S
il L] [0 BN size = F
i A A A A
set each valve 4o null
o I 2 3 4 ¢ ¢ 7

capac ;47 =8
size=0

The truth is that we just implemented an ArrayList!

Main idea of an ArrayList:

Internally use an array to hold the items.
This array needs to have enough space (capacity) to hold the items.

To add an item:

= First check if there is enough space.
If not, make a new array with more space and copy the old items into this array.
= Add the new item to the next empty slot.

How should we increase the capacity?

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Each ArraylList instance has a capacity. The capacity is the size of the array used to store the
elements in the list. It is always at least as large as the list size. As elements are added to an
ArraylList, its capacity grows automatically. The details of the growth policy are not specified
beyond the fact that adding an element has constant amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a large number of
elements using the ensureCapacity operation. This may reduce the amount of incremental
reallocation.

8 /s 11

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Let's practice with ArrayLists.

Note that Java Collections only work with reference types
We cannot directly use primitive types.

How do we use them with 1nt, doub le, char etc.?
Luckily, there are wrapper classes called Integer,Double, Character, etc.

import java.util.ArrayList; // don't forget this!
// import java.util.*; // can also be convenient to import everything in java.util

public class ArrayListExamples {
public static void main(String[] args) {
// initialize empty array list
ArrayList<Integer> list = new ArraylList<>();

list.add(2);
list.add(12);
list.add(5);
list.add(6);

System.out.println("list size = " + list.size()); // 4
for (int i = @; i < list.size(); i++) {

System.out.printin("Item[" + i + "]: " + list.get(i));
b

list.remove(2); // remove item at index 2 (i.e. the 5)
System.out.println("list size = " + list.size()); // 3

12

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;
2 // import java.util.x; // <—— this can be more convenient!

3

4 public class HashMapExample {

5 public static void main(String[] args) {

6 String lyric = "and i love vermont, but it's the season of the sticks";
7

8 HashMap<Character, Integer> frequency = new HashMap<>();
9 for (int i = 0; i < lyric.length(); i++) {

10 char ¢ = lyric.charAt(i);

11 if (frequency.containsKey(c)) {

12 frequency.put(c, frequency.get(c) + 1);

13 } else {

14 frequency.put(c, 0);

15

16 }

17

18 Set<Character> characters = frequency.keySet();

19 for (Character c : characters) {

20 System.out.printin("Character " + c + " appears " + frequency.get(c) + " times");
21 }

22 ¥

23 }

Find The Bug! g’

8/ 13

Here it is!

import java.util.HashMap;
// import java.util.*; // <—— this can be more convenient!

public class HashMapExample {
public static void main(String[] args) {
String lyric = "and i love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int 1 = 0; i < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
14 frequency.put(c, 1); // first time we encounter a character, it counts, so insert 1 not @

¥

Set<Character> characters = frequency.keySet();
for (Character c : characters) {
System.out.printin("Character " + c + " appears " + frequency.get(c) + " times");
}
¥
b

ars

14

See you Friday!

o We'll practice using ArrayListsin Friday's lab.

e HashMaps were just introduced now in case you find them helpful to solve problems (we'll
talk about the underlying data structures later in the semester).

e HashSets can also be useful if you want to store an unordered set of items.

e Read the write-ups and download the starter code for Lab 3 and Homework 3 in preparation
for lab on Friday.

e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week
and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

8/ 15

https://middcs.github.io/csci201s25/lab03
https://middcs.github.io/csci201s25/homework03
https://go.middlebury.edu/noah
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

