CSCI 201 Friday, April 25, 2025 Lab 8

DATA STRUCT URES

Hash Table ° Hash Function ° Collision Linear Probing

LinearProbing

Insert the following keys into four different hash tables (T1, T2, T3, T4). Start each hash
table with a capacity of 8, and use linear probing to handle collisions. Double the
capacity when the load factor ¢ > 0.5. Each table should have a capacity of 16 after
all keys have been added.

T1:6, 14, 35,16, 18, 32,4, 17 key | letter
T2:15, 11,9, 45, 23 - :
e
T3:0,2, 48,12, 67 - —
T4:6,14, 35, 18,33, 4, 17 5 :
9 a
11 k
12 r
14 k
15 s
16 t
17 o
18 a
23 m
32 e
. . 33 e
Then use the table on the right to convert each key from the resulting tables to a letter. 35 p
Note that different keys can map to the same letter. Decode the (non-null) keys from 45 e
left to right in each table (in the order of T1, T2, T3, T4): s h
67 d
[)) .
RuntimeComplexity ™« [
J n Cc1 C2 C3
The tables on the right show experimental timing data (in us) for a few 100 38 182 126
methods of certain Java Collections (C1, C2, C3). These collections 1000 409 2586 1256
are either an ArraylList, HashSet or TreeSet. Use the timing 10000 4370 124389 | 19928
data to determine which collection C1, C2, C3 might be.
e Treat the add data as the total time to add n items to the collection. |_Sontains
e Thecontains and remove tables report the total time to call these 2 £l £2 g8
methods 100 times for a collection of size n. 100 394 121 35
1000 4619 178 40
10000 65689 320 39
remove
n Cc1 C2 C3
100 287 89 32
1000 7730 182 34
10000 99444 334 33

