DATA STRUCTURES

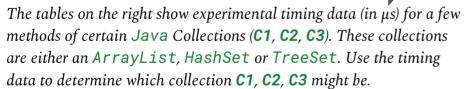
Hash Table • Hash Function • Collision • Linear Probing

LinearProbing

Insert the following keys into four different hash tables (**T1**, **T2**, **T3**, **T4**). Start each hash table with a capacity of 8, and use linear probing to handle collisions. Double the capacity when the load factor $\Omega > 0.5$. Each table should have a capacity of 16 after all keys have been added.

T1: 6, 14, 35, 16, 18, 32, 4, 17

T2: 15, 11, 9, 45, 23 **T3**: 0, 2, 48, 12, 67


T4: 6, 14, 35, 18, 33, 4, 17

key	letter	
0	t	
2	е	
4	w	
6	r	
9	а	
11	k	
12	r	
14	k	
15	s	
16	t	
17	0	
18	а	
23	m	
32	е	
33	е	
35	m	
45	е	
48	h	
67	d	

Then use the table on the right to convert each key from the resulting tables to a letter. Note that different keys can map to the same letter. Decode the (non-null) keys from left to right in each table (in the order of **T1**, **T2**, **T3**, **T4**):

RuntimeComplexity

microseconds

- Treat the add data as the total time to add n items to the collection.
- The contains and remove tables report the total time to call these methods 100 times for a collection of size n.

add			
n	C1	C2	C3
100	38	182	126
1000	409	2586	1256
10000	4370	124389	19928

contains			
n	C1	C2	C3
100	394	121	35
1000	4619	178	40
10000	65689	320	39

Hint: create a copy of the shared google sheet from the website.
Then, create charts for each method and set both x- and y- axes to
a Log Scale.

remove			
n	C1	C2	C3
100	287	89	32
1000	7730	182	34
10000	99444	334	33