Middlebury

CSCI 201: Data Structures
Fall 2025

Lecture 4T: Complexity

Remember our decision to double the capacity of a DIYL1ist
when we ran out of space during a call to add?

—> |im

size: 0 1 size: |

New Jceown copy

-

add

size: 2

on

"COV\\NS ft\\ﬂfts 3 \oop

3dd X

e Y
s\m.e‘.

add

size:3

Goals for today:

add
—

size: 0

New Jcedown,

size: |

Copy
—>

adé

size: 2

"(‘.og\ims RS 3 \oop

Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.

add
-

size: 0

new accov

adé
n - |n
size: | siz2e: 2
Copy
—> |im

"“’V‘\"“\ RS 3 \oop

add X

add

0Y)
s\m.e‘.

size:d

3.1

Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.
e Characterize how functions grow as the inputs get very large.

add
-

size: 0

new accov

adé
n - |n
size: | siz2e: 2
Copy
—> |im

"“’V‘\"“\ RS 3 \oop

add X

add

0Y)
s\m.e‘.

size:d

3.2

Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.
e Characterize how functions grow as the inputs get very large.

e Use big-O notation to describe the running time of algorithms.

add
—_

size: 0

new accov

adé
n - |n
size: | siz2e: 2
Copy
—> |im

"(‘.ov\'u\ss RS 3 \oop

add X

e Y
s\m.e‘.

add

—> |im

size:d

3.3

We also want our analysis to be computer-independent.

Two types of resources to consider:
* Processor cycles: number of operations per second a machine can perform.
e Memory: space for storing data while program is running (RAM, cache).

What kinds of things in our programs might affect the runtime?

Answer on sli.do - find the link on the course schedule!

Amount of data being processed e ohs conditions

big arrays searching if statements

nested for loops

recursion recursions sorting W h i I e I oo ps

Async versus synchronous code

computation

Conciscion fo r I 00 ps

The Collections framework describes the efficiency an

implemented method should provide.

Yy

List<E> \

lI Collection<E> I

y
‘ Set

4

<E>

y

y

Yy

[;rrayList<E>] [Linked.r..ist<£:>] [TreeSet<E>] [HashSet<E>] [TreeMap<K,V>] [HashMap<K,v>]

The size, isEmpty, get, set, iterator, and listIterator operations
run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).

The Collections framework describes the efficiency an
implemented method should provide.

lI Collection<E> Il
\ A Y

\ 4
[List<E>] ‘ Set<E> \ Map<K, V> \

A A \ A \ 4 \ 4

[ArrayList<E>] [Linked.r..ist<E>] [TreeSet<E>] [HashSet<E>] [TreeMap(K,W] [Hashmap<x,v>]

The , , , , , and operations
run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).

6.1

Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.

add add 2dd
— [l | — [a]in] — «x;

\}
sizer0 M (st 1) Size L space

new yciown Co_?\: al"

"COQ‘\'\NS Qe 3 Voo size:3d ‘>

G\O'. tHow mv\\s 2 when o d_m\'l ha(ﬂ v COP“]‘
(sddirg a (lent)

n AL\

Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.

\
size: 0 size: | size: L space
TS cops 2dd
[TTT]—[wel]]—[ww]]

size:3

"CW*\'\NS RO 3 \oop
B \: Bach HiMe Wl Copy, s ‘weve 3 pavrern ywat
fesudes tne ¥ ok ey we i\ m?v)_?
1,2, M 2', !¢, 2

02:When we vesae for e mm?*‘-m, now
Waty elementy WWave we ad&:& ¢

Wm=o, \tL NeZ ¢\ 27 04
/

e 03
ez, NS
M=y, ne

n Capacityy | douoled? [‘:

\ | K
. | 2 | o | t
Y yw | | 2z
""""" o og | o« |
""""" s | | | gy |
""""" o | € | x | |
""""" 2 | ¢ | ¥ |]
""""" x| 8 | X
""""" a | W6 | v | g |
o | 6 | w |

Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.

new yciown copy 2dd
(LI T]— (e []—[nl]]

"Cogu\'\ms RIS 3 ooy size:d

B \: Eadh HMe Wb Copy, s Wweve 2 pakrern Ynak

fesuies tne ¥ 0k ivewy e Wi
‘) Z/ Hl %

copy
Z.' Z.l/ Ll’23 ?u)

02:When we vesae for Ae mw Yme, Now

Wty elementy

G} Vow W\‘Bi\v)

™Me' _
< _7"’—-: Z

2\
=72N -3

nawe we 2dded
ﬂcz,n"\ Zm':.ﬂ"\

are uwit do‘\l\s when we °°?“59

=M

14242+ D% 2 .
M'l\._\ . 2-2 —l = Z‘(j_m—l

n Capacityy | douoled? [‘:

\ | K
. | 2 | o | t
Y yw | | 2 |
""""" o og | o« |
""""" s | | |y |
""""" o | € | x | |
""""" 2 | ¢ | ¥ |
""""" x| 8 | X
""""" a | W6 | v | g |
o | 6 | w |

Two types of series we'll encounter:

1. Geometric: rw.._l
l+Cec®s p . 0" =

\¢2 ¢ 2_1*L3= [¢244¢2 1S 9 -\

\4Ze 31D+,

So the total number of = when calling add n times is:

N+20-3 < Bn-3

add 3dd add X
[T1 5 B[] = @] = =

\
size: 0 size: | size: L spactt
1o 0TS copy 2dd
[TTT]—=[we[T]—[wwT]]

size:d

] CORYinn YRS 3 \oop

Averaged over n calls to add (with n getting very large):

%“—3‘. 3“_3_, —:3-1
— "'“ "\ n

)

3

We need a better way to analyze running time of algorithms.

Big-O notation: Given functions f, g, we say that f(z) is O(g(z)) if-
and-only-if there exist constants ¢ > 0 and k such that

f(x)] <c-lg(z)|, forall x>k

n

g®

S

/ |

CWNRNR

Vv

10

Example: Show that 2% + 2z + 1is O(z?).
show XEt2xtl & c-x= b W x zk
Cewrile (L'l\xz- ~2%x<1 20 KK

chosse ¢ =2 =D e aust showd

2
A ~2x-l20
Kod e w2
Z.z"‘ L-'L“lzo
q—q-\LO
2 Y20 X
Yy
3+~ 2| 20
q-6-l 20

226 V

Us.

X2

11

Common functions used in big-O estimates.

(Discrete Mathematics and Its Applications 7th Ed., Rosen)

12

We usually want to express our algorithm runtime using the

tightest bound.

We'll often use T'(n) to represent algorithm runtime in terms of input size n.

Strategy:

1.
2.

Pick out fastest growing term in T'(n).
Drop coefficients.

Determine a big-O bound for the following functions.

1.

2.

3.

T(n) =%+ 5n: 0(,“3
T(n):1+_522: O("f\

T(n) = 5+ 20n + 3n% O(n‘)
) 20 O ()
n) = 5: 0(%

T(n) =n(5+ logn): O(f\\ O%fﬁ

13

A few rules for inferring big-O bounds on algorithm runtime.

14

A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

14.1

A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b).

for (int 1 = 0; i < n; i++) {
// some block performing T(b) amount of work

14.2

A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b). nested for loop: T'(n,m) = n x m x T(b).
for (int i = 0; 1 < n; i++) { for (int i = 0; i < hj.di++) {
// some block performing T(b) amount of work for (int j =0; j <Wm;/ j++) {

// some block performing T(b) amount of work

14.3

A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b). nested for loop: T'(n,m) = n x m x T(b).
for (int i = @0; 1 < n; i++) { for (int 1 = 0; 1 < n; i++) {
// some block performing T(b) amount of work for (int j =0; § <m; j++) {

// some block performing T(b) amount of work

if statements: T'(n) = T(c) + max(T(b;), T(b))

if (condition) { // condition performs T(c) amount of work
bodyl; // performing T(bi) amount of work

} else {
body2; // performing T(be) amount of work

14.4

Determine T'(n) (an expression for the number of operations performed by the
following algorithms), then provide a big-O bound on T'(n). focen on 14

Example 1: Example 2: Example 3:
int sum = 0; int sum = 0; int sum = 0;
for (int i = 0; 1 < n; itt) { for (int i = 0; 1 < n; i++) { for (int i = 0; 1 < n; i++) {
for (int j =0; j < m; j++) { for (int j = 0; j < n; j+\+){ for (int j = 0; j <= 1; j++) {
sum++; R for (int k = 0; k < m; k++) { , sum++; =
e) -
} | SRR
N4 N\ © } N+ —
A YRR AR
0 L(\ N
120 | alneD)
o - - ./
\ -\ 'L L
s‘ ;L ‘l 3
.\ cq-1 2O

The Collections framework describes the efficiency an
implemented method should provide.

lI Collection<E> I

Yy 4 y

A
List<E> \ ‘ Set<E> Map<K, V> \

Yy y y y Yy y

[ArrayList<E>] [Linked.r..ist<£:>] [TreeSet<E>] [HashSet<E>] [TreeMap<K,V>] [HashMap<K,v>]

The size, isEmpty, get, set, iterator, and listlIterator operations
run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).

16

The Collections framework describes the efficiency an
implemented method should provide.

lI Collection<E> Il
\ A Y

\ 4
[List<E>] ‘ Set<E> \ Map<K, V> \

A A \ A \ 4 \ 4

[ArrayList<E>] [Linked.r..ist<E>] [TreeSet<E>] [HashSet<E>] [TreeMap(K,W] [Hashmap<x,v>]

The size, isEmpty, get, set, iterator, and listlIterator operations
run in constant time. The operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).

16.1

See you on Thursday!

e We'll use what we covered today to analyze some sorting algorithms.

Start studying for the programming exam and sign up for your timeslot ASAP!

Turnin Lab 3 by 5PM tonight.

Work on Homework 3! Implement yourown ArrayListString.

Reminder that Smith (go/smith) has office hours throughout the week and the 201 Course
Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

17

https://middcs.github.io/csci0201-f25/labs/lab03/
https://middcs.github.io/csci0201-f25/homework/homework03/
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

