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Remember our decision to double the capacity of a DIYL1ist
when we ran out of space during a call to add?
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Goals for today:
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Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.
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Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.
e Characterize how functions grow as the inputs get very large.
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Goals for today:

e Analyze the runtime cost of our add method foraDIYL1ist as we call it many times.
e Characterize how functions grow as the inputs get very large.

e Use big-O notation to describe the running time of algorithms.
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We also want our analysis to be computer-independent.

Two types of resources to consider:
* Processor cycles: number of operations per second a machine can perform.
e Memory: space for storing data while program is running (RAM, cache).



What kinds of things in our programs might affect the runtime?

Answer on sli.do - find the link on the course schedule!

Amount of data being processed e ohs conditions

big arrays searching if statements

nested for loops

recursion  recursions  sorting W h i I e I oo ps

Async versus synchronous code

computation

Conciscion fo r I 00 ps



The Collections framework describes the efficiency an

implemented method should provide.
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[;rrayList<E>] [Linked.r..ist<£:>] [TreeSet<E> ] [HashSet<E> ] [TreeMap<K,V>] [HashMap<K,v>]

The size, isEmpty, get, set, iterator, and listIterator operations
run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).



The Collections framework describes the efficiency an
implemented method should provide.
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run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Two types of series we'll encounter:
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So the total number of = when calling add n times is:
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We need a better way to analyze running time of algorithms.

Big-O notation: Given functions f, g, we say that f(z) is O(g(z)) if-
and-only-if there exist constants ¢ > 0 and k such that

f(x)] <c-lg(z)|, forall x>k
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Example: Show that 2% + 2z + 1is O(z?).
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Common functions used in big-O estimates.

(Discrete Mathematics and Its Applications 7th Ed., Rosen)
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We usually want to express our algorithm runtime using the

tightest bound.

We'll often use T'(n) to represent algorithm runtime in terms of input size n.

Strategy:

1.
2.

Pick out fastest growing term in T'(n).
Drop coefficients.

Determine a big-O bound for the following functions.
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A few rules for inferring big-O bounds on algorithm runtime.
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A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work
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A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b).

for (int 1 = 0; i < n; i++) {
// some block performing T(b) amount of work
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A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b). nested for loop: T'(n,m) = n x m x T(b).
for (int i = 0; 1 < n; i++) { for (int i = 0; i < hj.di++) {
// some block performing T(b) amount of work for (int j =0; j <Wm;/ j++) {

// some block performing T(b) amount of work
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A few rules for inferring big-O bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

forloop: T'(n) = n x T(b). nested for loop: T'(n,m) = n x m x T(b).
for (int i = @0; 1 < n; i++) { for (int 1 = 0; 1 < n; i++) {
// some block performing T(b) amount of work for (int j =0; § <m; j++) {

// some block performing T(b) amount of work

if statements: T'(n) = T(c) + max(T(b;), T(b))

if (condition) { // condition performs T(c) amount of work
bodyl; // performing T(bi) amount of work

} else {
body2; // performing T(be) amount of work
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Determine T'(n) (an expression for the number of operations performed by the
following algorithms), then provide a big-O bound on T'(n). focen on 14

Example 1: Example 2: Example 3:
int sum = 0; int sum = 0; int sum = 0;
for (int i = 0; 1 < n; itt) { for (int i = 0; 1 < n; i++) { for (int i = 0; 1 < n; i++) {
for (int j =0; j < m; j++) { for (int j = 0; j < n; j+\+){ for (int j = 0; j <= 1; j++) {
sum++; R for (int k = 0; k < m; k++) { , sum++; =
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The Collections framework describes the efficiency an
implemented method should provide.
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[ArrayList<E>] [Linked.r..ist<£:>] [TreeSet<E> ] [HashSet<E> ] [TreeMap<K,V>] [HashMap<K,v>]

The size, isEmpty, get, set, iterator, and listlIterator operations
run in constant time. The add operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).
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The Collections framework describes the efficiency an
implemented method should provide.
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[ArrayList<E>] [Linked.r..ist<E>] [TreeSet<E> ] [HashSet<E> ] [TreeMap(K,W] [Hashmap<x,v>]

The size, isEmpty, get, set, iterator, and listlIterator operations
run in constant time. The operation runs in amortized constant
time, that is, adding n elements requires O(n) time. All of the
other operations run in linear time (roughly speaking).
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See you on Thursday!

e We'll use what we covered today to analyze some sorting algorithms.

Start studying for the programming exam and sign up for your timeslot ASAP!

Turnin Lab 3 by 5PM tonight.

Work on Homework 3! Implement yourown ArrayListString.

Reminder that Smith (go/smith) has office hours throughout the week and the 201 Course
Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).
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https://middcs.github.io/csci0201-f25/labs/lab03/
https://middcs.github.io/csci0201-f25/homework/homework03/
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

