
CSCI 201: Data Structures
Fall 2025

Lecture 4T: Complexity
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Remember our decision to double the capacity of a DIYList
when we ran out of space during a call to add?
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Goals for today:
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Goals for today:
Analyze the runtime cost of our add method for a DIYList as we call it many times.
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Goals for today:
Analyze the runtime cost of our add method for a DIYList as we call it many times.
Characterize how functions grow as the inputs get very large.
Use big-O notation to describe the running time of algorithms.
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We also want our analysis to be computer-independent.

 
Two types of resources to consider:

Processor cycles: number of operations per second a machine can perform.
Memory: space for storing data while program is running (RAM, cache).
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What kinds of things in our programs might affect the runtime?

Answer on sli.do - find the link on the course schedule!
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The Collections framework describes the efficiency an
implemented method should provide.

 The add operation runs in amortized constant
time, that is, adding  elements requires  time. 

The size, isEmpty, get, set, iterator, and listIterator operations
run in constant time.

n O(n) All of the
other operations run in linear time (roughly speaking).
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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Two types of series we'll encounter:

1. Geometric:

2. Arithmetic:
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So the total number of = when calling add  times is:

Averaged over  calls to add (with  getting very large):

n

n n
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We need a better way to analyze running time of algorithms.

Big-O notation: Given functions , we say that  is  if-
and-only-if there exist constants  and  such that

f,  g f(x) O(g(x))
c > 0 k

|f(x)| ≤ c ⋅ |g(x)|, for all  x ≥ k
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Example: Show that  is .x2 + 2x + 1 O(x2)
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Common functions used in big-O estimates.

(Discrete Mathematics and Its Applications 7th Ed., Rosen)
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We usually want to express our algorithm runtime using the
tightest bound.

We'll o!en use  to represent algorithm runtime in terms of input size .

Strategy:
1. Pick out fastest growing term in .
2. Drop coefficients.

Determine a big-O bound for the following functions.

1. :

2. :

3. :

4. :

5. :

6. :

T (n) n

T (n)

T (n) = 1 + 5n

T (n) = 1 + 5n2

T (n) = 5 + 20n + 3n2

T (n) = n2(n2+1)
2

T (n) = 5

T (n) = n(5 + log n)
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A few rules for inferring big-O bounds on algorithm runtime.
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A few rules for inferring big-O bounds on algorithm runtime.

 

consecutive statements:  T (n) = T (s1) + T (s2)

statement1; // performing T(s1) amount of work
statement2; // performing T(s2) amount of work
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A few rules for inferring big-O bounds on algorithm runtime.

 

consecutive statements:  T (n) = T (s1) + T (s2)

statement1; // performing T(s1) amount of work
statement2; // performing T(s2) amount of work

for loop:  .T (n) = n × T (b)

for (int i = 0; i < n; i++) {
  // some block performing T(b) amount of work
}

nested for loop:  .T (n, m) = n × m × T (b)

for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++) {
    // some block performing T(b) amount of work
  }
}
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A few rules for inferring big-O bounds on algorithm runtime.

 

consecutive statements:  T (n) = T (s1) + T (s2)

statement1; // performing T(s1) amount of work
statement2; // performing T(s2) amount of work

for loop:  .T (n) = n × T (b)

for (int i = 0; i < n; i++) {
  // some block performing T(b) amount of work
}

nested for loop:  .T (n, m) = n × m × T (b)

for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++) {
    // some block performing T(b) amount of work
  }
}

if statements:  T (n) = T (c) + max(T (bi), T (be))

if (condition) { // condition performs T(c) amount of work
  body1; // performing T(bi) amount of work
} else {
  body2; // performing T(be) amount of work
}
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Determine  (an expression for the number of operations performed by the
following algorithms), then provide a big-O bound on .

Example 1:  Example 2:  Example 3:

T (n)
T (n)

int sum = 0;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++) {
    sum++;
  }
}

int sum = 0;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
    for (int k = 0; k < m; k++) {
      sum++;
    }
  }
}

int sum = 0;
for (int i = 0; i < n; i++) {
  for (int j = 0; j <= i; j++) {
    sum++;
  }
}
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The Collections framework describes the efficiency an
implemented method should provide.

The size, isEmpty, get, set, iterator, and listIterator operations
run in constant time. 

 All of the
other operations run in linear time (roughly speaking).

The add operation runs in amortized constant
time, that is, adding  elements requires  time.n O(n)
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See you on Thursday!
We'll use what we covered today to analyze some sorting algorithms.
Start studying for the programming exam and sign up for your timeslot ASAP!
Turn in  by 5PM tonight.
Work on ! Implement your own ArrayListString.
Reminder that Smith ( ) has office hours throughout the week and the 201 Course
Assistants have drop-in hours in the late a!ernoons/evenings ( ).

Lab 3
Homework 3

go/smith
go/cshelp
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