Middlebury

CSCI 201: Data Structures
Fall 2025

Lecture 4R: Sorting

Goals for today:

Analyze the runtime of sorting algorithms including selection sort and insertion sort.
Work with your groups to implement a sorting algorithm!

Identify properties of sorting algorithms: in-place, stable.

Customize how sorting is done for our own objects.

Describe the steps in bucket sort and radix sort.

Differentiate between the best, worst and average case runtime of an algorithm.

Why is sorting important?

Title Album

Vb\ Blank Sp}ace (Taylor's Version) 1989 (Taylor's Version)
7 Taylor Swift
> € Love Story (Taylor’s Version)

Love Story (Taylor’s Version)
Taylor Swift

'3 | Can Do It With a Broken Heart
Y ETaonl Swift

THE TORTURED POETS DEPART...

Cruel Summer
a . Lover
Taylor Swift

. wi | Knew You Were Trouble (Taylor's V...
2l Taylor Swift

g‘ Look What You Made Me Do

¥ Taylor Swift

Red (Taylor's Version)

j 8.ABugsLife

reputation

Amisfit ant, looking for “warriors" o save his colony fror

Review worksheet from last class: determine the big-O bound for various
methods

The Collections framework has built-in methods to sort.

lI Collection<E> I

Yy Y y

List<E> \ ‘ Set<E> Map<K, V> \

Yy y y y Yy y

[ArrayList<E>] [Linked.r..ist<£:>] [TreeSet<E>] [HashSet<E>] [TreeMap<K,V>] [HashMap<K,v>]

public static void sort(List<T> list)

Sorts the specified list into ascending order, according to the natural
ordering of its elements. All elements in the list must implement the
Comparable interface.

This sort is guaranteed to be stable: equal elements will not be
reordered as a result of the sort.

The Collections framework has built-in methods to sort.

lI Collection<E> Il
\ A Y

\ 4
[List<E>] ‘ Set<E> \ Map<K, V> \

A A \ A \ 4 \ 4

[ArrayList<E>] [Linked.r..ist<£:>] [TreeSet<E>] [HashSet<E>] [TreeMap<K,V>] [Hashmap<x,v>]

(List<T> 1list)

Sorts the specified list into ascending order, according to the natural
ordering of its elements. All elements in the list must implement the
interface.

This sort is guaranteed to be stable: equal elements will not be
reordered as a result of the sort.

4.1

—

The Arrays class also has built-in static methods to sort which
can be used for fixed-size arrays.

static

static

static

static

static

static

static

static

static

static

static

static

static

static

void

void

void

void

void

void

void

void

void

void

void

void

<T> void

<T> void

sort(double[] a)
Sorts the specified array into ascending numerical order.

sort(double[] a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

sort(float[] a)
Sorts the specified array into ascending numerical order.

sort(float[] a, int fromIndex, int toIndex)

Sorts the specified range of the array into ascending order.
sort(int[] a)

Sorts the specified array into ascending numerical order.

sort(int[] a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

sort(long[] a)
Sorts the specified array into ascending numerical order.

sort(long[] a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

sort(Object[] a)
Sorts the specified array of objects into ascending order, according to the natural ordering of its elements.

sort(Object[] a, int fromIndex, int toIndex)
Sorts the specified range of the specified array of objects into ascending order, according to the natural ordering of its elements.

sort(short[] a)
Sorts the specified array into ascending numerical order.

sort(short[] a, int fromIndex, int toIndex)
Sorts the specified range of the array into ascending order.

sort(T[] a, Comparator<? super T> c)
Sorts the specified array of objects according to the order induced by the specified comparator.

sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c)
Sorts the specified range of the specified array of objects according to the order induced by the specified comparator.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place itin its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place it in its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

1 public static void sort(int[] items) {

2 for (int i = 0; i < items.length; i++) {
3 int minValue = items[i];

4 int minIndex = 1i;

5 for (int j = i + 1; j < items.length; j++) {
6 if (items[j] < minValue) {

7 minValue = items[j];

8 minIndex = j;

9 s

10 }

11 items[minIndex] = items[il;

12 items[i] = minValue;

13}

6.1

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place itin its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

5 for (int j = i + 1; j < items.length; j++) {

6.2

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place it in its final

position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.

2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

6 if (items[j] < minValue) {
7 minValue = items[j];

8 minIndex = j;

9

¥

6.3

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place itin its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

11 items[minIndex] = items[il;
12 items[i] = minValue;

6.4

Sorting Algorithm #1 (Selection Sort):

Main idea: Repeatedly select the next smallest element and place it in its final
position. Maintain sorted elements on the left (of some imaginary divider) and
unsorted elements on the right.

1. Find the smallest element in unsorted part.
2. Swap this smallest element with the element to the right of this divider.
3. Move the divider to the right (by one) and go back to Step 1.

1 public static void sort(int[] items) {

2 for (int i = 0; i < items.length; i++) {
3 int minValue = items[i];

4 int minIndex = 1i;

5 for (int j = i + 1; j < items.length; j++) {
6 if (items[j] < minValue) {

7 minValue = items[j];

8 minIndex = j;

9 s

10 }

11 items[minIndex] = items[il;

12 items[i] = minValue;

13}

14 }

6.5

Sorting Algorithm #2 (Insertion Sort):

Main idea: Repeatedly insert the next element into those that are already sorted.

Maintain sorted elements on the left (of some imaginary divider) and unsorted
elements on the right.

1. Look at first element in unsorted part (to the right of divider).
2. lteratively swap this into the correct place in the sorted part.
3. Move the divider to the right (by one) and go back to Step 1.

Sorting Algorithm #2 (Insertion Sort):

Main idea: Repeatedly insert the next element into those that are already sorted.

Maintain sorted elements on the left (of some imaginary divider) and unsorted
elements on the right.

1. Look at first element in unsorted part (to the right of divider).
2. lteratively swap this into the correct place in the sorted part.
3. Move the divider to the right (by one) and go back to Step 1.

Work in groupsin InsertionSort. java!

X ®O0A0 WO £ & LiveShare C»Java: Ready

@ Invitation link copied to clipboard! Send it to anyone you % X
trust or click "More info" to learn about secure sharing.

Source: Live Share Make read-only Copy again

71

Possible implementation of InsertionSort. java.

public static void sort(int[] items) {
for (int i = 0; i < items.length; i++) {

int j = 1i;

while (j > 0 && items[j] < items[j - 1]) {
// swap items at j and j - 1
int tmp = items[j];
items[j] = items[j - 1];
items[j - 1] = tmp;
i—-i

[4Ledt.. 0\

‘\ £ ‘ // selection sort
v\ public static void sort(int[] items) {

—— for (int i = 0; i < items.length; i++) {

int minvalue = items[i];
2_ int minIndex = i;

for (int j = i +.1; j < items.length; j++) {

if (items[j] inValue) {
minValue = items[j];
minIndex = j;

}

items[minIndex] = items[i];
items[i] = minValue;

{ = n-| N~
LS\ S w2 n___(]_)
HE I W (R 7

o QF’()‘:S]F st
Dert care

Runtime analysis of selection and insertion sort.

// insertion sort
public static void sort(int[] items) {

for (int i = @; 1 < items.length; i++) {

int j = i;

while (j > 0 && items[j] tems[j - 1]1) {
// swap items at j and -1
int tmp = items[j];
items[j] = items[j - 1];
items[j - 1] = tmp;
i—i

i-rb~> O
ve L |
W\ S 2>

o

V-l D n-Z
st S
oes» Cave d("‘)

O (n)

welsd CI

What if we want to compare our own custom objects?
We have two options.
MYl clasg

public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred to as the class's
natural ordering, and the class's compareTo method is referred to as its natural comparison method. M"'
W s

public interface Comparator<T>

A comparison function, which imposes a total ordering on some collection of objects. Comparators can be passed to a sort method
(such as Collections.sort or Arrays.sort) to allow precise control over the sort order. Comparators can also be used to control the
order of certain data structures (such as sorted sets or sorted maps), or to provide an ordering for collections of objects that don't
have a natural ordering.

The ordering imposed by a comparator c on a set of elements S is said to be consistent with equals if and only if c.compare(el,
e2)==0 has the same boolean value as el.equals(e2) for every el and e2 in S.

10

What if we want to compare our own custom objects?
We have two options.

public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred to as the class's
natural ordering, and the class's compareTo method is referred to as its natural comparison method.

public interface Comparator<T>

A comparison function, which imposes a total ordering on some collection of objects. Comparators can be passed to a sort method
(such as Collections.sort or Arrays.sort) to allow precise control over the sort order. Comparators can also be used to control the
order of certain data structures (such as sorted sets or sorted maps), or to provide an ordering for collections of objects that don't
have a natural ordering.

The ordering imposed by a comparator c on a set of elements S is said to be consistent with equals if and only if c.compare(el,
e2)==0 has the same boolean value as el.equals(e2) for every el and e2 in S.

OpenMovieSorter. java for examples.

10.1

implementsing compareTo(Movie otherMovie)
within the Movie class so it can be Comparab'le.

class Movie implements Comparable {
public String title;
public int year;
public double rating;

public Movie(String title, int year, double rating) {
this.title = title;
this.year = year;
this.rating = rating;

b

public int compareTo(Movie otherMovie) {
if (rating < otherMovie.rating) {

return -1;
} else if (rating > otherMovie.rating) {
return 1;
¥
return 0;
¥
public String toString() {
return title + " (" + year + "), rating = " + rating;
b

b

11

implementsing compare(Movie moviel, Movie movie2)
outside the Movie class to create a Comparator.

class MovieYearComparator implements Comparator { // make sure to import java.util.Comparator
public int compare(Movie moviel, Movie movie2) {
if (moviel.year < movie2.year) {
return -1;
} else if (moviel.year > movie2.year) {
return 1;

return 0;
}
¥

class MovieTitleLengthComparator implements Comparator {
public int compare(Movie moviel, Movie movie2) {
if (moviel.title.length() < movie2.title.length()) {
return -1;
} else if (moviel.title.length() > movie2.title.length()) {
return 1;

return 0;

// Somewhere else in the code (possibly a PSVM)

// Create a Comparator<T> object and pass it to sort:

Arrays.sort(movies, new MovieYearComparator()); // sort by year
Arrays.sort(movies, new MovieTitleLengthComparator()); // sort by title length

12

Sorting Algorithm #3 (Bucket Sort):

Main idea: put items in buckets, sort each bucket, re-assemble.

1. Set up some number of buckets k.

2. Scatter all n items into the appropriate bucket.
3. Sort each bucket.

4. Gather items from buckets into sorted array.

Sorting Algorithm #3 (Bucket Sort):

Main idea: put items in buckets, sort each bucket, re-assemble.

1
2
3
4

. Set up some number of buckets k.

. Scatter all n items into the appropriate bucket.
. Sort each bucket.

. Gather items from buckets into sorted array.

Notes:

e Does not require items to be comparable

(unless using comparison-based sorting for each bucket).

e Works well if the input data is uniformly distributed

(i.e. buckets evenly sized).

 Disadvantage: how to determine number of buckets k?

(need information about input data).

* Worst-case runtime: O(n?).
e Average-case runtime: O(n + k).
* Notin-place, but stable. In-place algorithms do not need extra space proportional to the input size.

14

Sorting Algorithm #4 (Radix Sort):

Main idea: similar to bucket sort, use digits to make buckets.

1. Pick aradix (base for each digit; we'll use 10).

2. Foreach digit d (starting from least significant digit):
1. Make 10 empty buckets for this digit's possible values (0 - 9).
2. Get the d* digit of each item
and put into the appropriate bucket.
3. Go back through all buckets and put items
from each bucket back into the original array.

15

Sorting Algorithm #4 (Radix Sort):

Main idea: similar to bucket sort, use digits to make buckets.

1. Pick aradix (base for each digit; we'll use 10).

2. Foreach digit d (starting from least significant digit):
1. Make 10 empty buckets for this digit's possible values (0 - 9).
2. Get the d* digit of each item
and put into the appropriate bucket.
3. Go back through all buckets and put items
from each bucket back into the original array.

Notes:

Does not require items to be comparable.

Worst-case runtime: O(n - k) (k is the maximum number of digits).
Average-case runtime: O(n - k).

Not in-place, but stable.

16

See you Friday!

e Keep studying for the programming exam and sign up for your timeslot if you haven't yet!

e Finish Homework 3 by 5PM tonight

e InLab 4 and Homework 4 we'll practice with implementing some of these sorting algorithms.

e Reminder that Smith (go/smith) has office hours throughout the week and the 201 Course
Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

17

https://middcs.github.io/csci0201-f25/homework/homework03/
https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

