Daw

]

Middlebury

CSCI 201: Data Structures
Fall 2025

Lecture 3R;: Java Collections

Goals for today:

Goals for today:

e Beabletouse javadoc and checksty Le to create clean, well-documented
code.

2.1

Goals for today:

e Beabletouse javadoc and checksty Le to create clean, well-documented
code.
e |dentify the difference between an Abstract Data Type and a Data Structure.

2.2

Goals for today:

e Beabletouse javadoc and checksty Le to create clean, well-documented
code.

e |dentify the difference between an Abstract Data Type and a Data Structure.

e UseanArrayList to store multiple items (of the same type), in which the
number of items can increase/decrease based on the needs of your algorithm.

2.3

Goals for today:

Be able to use Jjavadoc and checksty Le to create clean, well-documented
code.

Identify the difference between an Abstract Data Type and a Data Structure.
Usean ArrayList to store multiple items (of the same type), in which the
number of items can increase/decrease based on the needs of your algorithm.
Use a HashMap to store key-value pairs.

2.4

What's a Jjavadoc comment?

YESS
Retrieves one of the cards in the hand.

1).
@return the card in the hand at the requested index.
*/
public FaceUpCard getCard(int cardIndex) A{
return cards[cardIndex];

¥

*
sk
* @param cardIndex — index of card in the hand (between @ and cards.length -
*
sk

cwLwWwooNOURWNER

=

What's a Jjavadoc comment?

YESS
Retrieves one of the cards in the hand.

1).
@return the card in the hand at the requested index.
*/
public FaceUpCard getCard(int cardIndex) A{
return cards[cardIndex];

¥

*
sk
* @param cardIndex — index of card in the hand (between @ and cards.length -
*
sk

cwLwWwooNOURWNER

=

getCard

public FaceUpCard getCard(int cardIndex)

Retrieves one of the cards in the hand.
Parameters:

cardIndex - - index of card in the hand (between 0 and cards.length - 1).
Returns:

the card in the hand at the requested index.

3.1

What's a javadoc comment?

Constructor Summary
Constructor Description
FaceUpHand(int numCards) Create a new FaceUp card game state, which consists of the numCards cards for the game.

FaceUpHand (FaceUpCard[] cards) Create a new FaceUp card game state, which consists of the specific cards that will be used Used for testing,
not for gameplay!

Method Summary
Al Methods
Modifier and Type Method Description
int calculateOptimal() Determines the optimal number of points in the hand, which is the sum of all the red card
points.
int faceDownTotal() Calculate the total score for the cards that are face down
int faceUpTotal() Calculate the total score for the cards that are face up.
void flipCard(int cardIndex) Flips the the card from face-up to face-down or face-down to face-up.
FaceUpCard getCard(int cardIndex) Retrieves one of the cards in the hand.
static void main(String®[] args) Test Hand methods
String? test()

String® toString()

Using checkstyle as an automated style checker

1 public class BadStyle {

2 public static void main(String[] args) {
3 int x =5, y = 20;

4 String my_name = "Mike Wazowski'"; int age = 20;
5 for(int i = 0; i<values.length;i++){

6 if(condition) A

7

8 b

9 else

10 {

11

12 ¥

13 I3

14 }

15 }

Using checkstyle as an automated style checker

1 public class BadStyle {
2 public static void main(String[] args) {
3 int x =5, y = 20;
4 String my_name = "Mike Wazowski'"; int age = 20;
5 for(int i = 0; i<values.length;i++)<{
6 if(condition) {
7
8 I
9 else
10 {
11
12 }
13 I3
14 }
15 }
1 Starting audit...
2 [WARN] BadStyle.java:1:1: Missing a Javadoc comment. [MissingJavadocTypel
3 au
4 [WARN] BadStyle.java:4:51: Only one statement per line allowed. [OneStatementPerLine]
5 [WARN] BadStyle.java:5:5: 'for' is not followed by whitespace. [WhitespaceAfter]
6 «us
7 Audit done.

Using checkstyle as an automated style checker

1 public class BadStyle {

2 public static void main(String[] args) {

3 int x =5, y = 20;

4 String my_name = "Mike Wazowski'"; int age = 20;
5 for(int i = 0; i<values.length;i++){

6 if(condition) A

7

8

}
9 else
10 {
11
12 }
13 }
14 }
15 }

Starting audit...
[WARN] BadStyle.java:1:1: Missing a Javadoc comment. [MissingJavadocType]

[WARN] BadStyle.java:4:51: Only one statement per line allowed. [OneStatementPerLine]
[WARN] BadStyle.java:5:5: 'for' is not followed by whitespace. [WhitespaceAfter]

NO OB WN -

Audit done.

e checksty le will run automatically on gradescope, and you can run it in vscode!

5.2

Using checkstyle as an automated style checker

1 public class BadStyle {

2 public static void main(String[] args) {

3 int x =5, y = 20;

4 String my_name = "Mike Wazowski'"; int age = 20;
5 for(int i = 0; i<values.length;i++){

6 if(condition) A

7

8

}
9 else
10 {
11
12 }
13 }
14 }
15 }

Starting audit...
[WARN] BadStyle.java:1:1: Missing a Javadoc comment. [MissingJavadocType]

[WARN] BadStyle.java:4:51: Only one statement per line allowed. [OneStatementPerLine]
[WARN] BadStyle.java:5:5: 'for' is not followed by whitespace. [WhitespaceAfter]

NO OB WN -

Audit done.

e checksty le will run automatically on gradescope, and you can run it in vscode!
e We will use the configuration for Google's java style guide.

5.3

https://google.github.io/styleguide/javaguide.html

Motivating dynamic storage

How would you keep track of which Pokémon a player has?

2 ¥ 8 U

Motivating dynamic storage

How would you keep track of which Pokémon a player has?

How would you organize songs in a music playlist?

§ \owss 2

Title Album
"’/ﬂ\ Blank Sp.ace (Taylor's Version) 1989 (Taylor's Version)
i Taylor Swift

v 4 LoveStory (Taylor’s Version)

Love Story (Taylor’s Version
Edler St y (Tay)

e 8 | Can Do It With a Broken Heart
o B Taylor Swift

Cruel Summer
% Taylor Swift

THE TORTURED POETS DEPART...

. m | Knew You Were Trouble (Taylor's V...
) Taylor Swift

6] Look What You Made Me Do
¢ Taylor Swift

6.1

Motivating dynamic storage

How would you keep track of which Pokémon a player has?

How would you organize songs in a music playlist?

§ \owss 2

Title Album
"’/ﬂ\ Blank Sp.ace (Taylor's Version) 1989 (Taylor's Version)
i Taylor Swift

v 4 LoveStory (Taylor’s Version)

Love Story (Taylor’s Version
Edler St y (Tay)

e 8 | Can Do It With a Broken Heart
o B Taylor Swift

Cruel Summer
% Taylor Swift

THE TORTURED POETS DEPART...

. m | Knew You Were Trouble (Taylor's V...
) Taylor Swift

6] Look What You Made Me Do
¢ Taylor Swift

These tasks would be a bit hard to do with fixed-size arrays (directly).

6.2

Motivating dynamic storage

Motivating dynamic storage

Imagine we had a utility to keep track of this - what methods would you like?

71

There are tools (built into Java) to help with this.

A collection represents a group of objects, known as its elements.

{ Collection<E>

‘ Set<E> \ ‘ Map<K, V> \

l l l l : l

[ArrayList<E>] E’..inkedList<E>] [TreeSet<E>] [HashSet<E>] [TreeMap<K,V>] [HashMap<K,V>]

e Abstract Data Type (ADT): formal description of behavior of data type, e.g. a
List allows accessing item at a specified index (but implementation can vary).

e Data Structure: concrete organization/representation of data (implements spec
defined by an ADT). Example: ArrayList.

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

Okay, let's take a shot at a L1st ourselves.

We'll design our own implementation of a List called DIYList.

But first, we should check the L1st spec:
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Okay, let's take a shot at a L1st ourselves.

We'll design our own implementation of a List called DIYList.

But first, we should check the L1st spec:
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Let's focus on methods to:

Constructanempty DIYL1ist.

add anitemtoaDIYList.

remove anitemfromaDIYL1st.

Retrieve the number of items (size)inaDIYList.
c leartheitemsinaDIYList.

A S A

9.1

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Okay, let's take a shot at a L1st ourselves.

We'll design our own implementation of a List called DIYList.

But first, we should check the L1st spec:
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Let's focus on methods to:

A S A

Constructanempty DIYL1ist.

add anitemtoaDIYList.

remove anitemfromaDIYL1st.

Retrieve the number of items (size)inaDIYList.
c leartheitemsinaDIYList.

@ Idea: use a fixed-size array that has enough space (capacity) to hold our items.

If we need more space, just allocate a new larger array and copy items!

9.2

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Adding (add) anitemtoa DIYL1ist.

Without loss of generality, imagine our DIYL1st can only hold String items.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void add(String item) {
// Is there enough space (capacity, i.e. items.length)?
// If not, make more space and copy the old items.

// Place item in items[size] and increment size.
}
}

10

Removing (remove) an item fromaDIYL1ist.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void remove(int index) {
// if index is beyond the index of the last item, nothing to do —> return

// replace the item at index with the item at index + 1

// replace the item at index + 1 with the item at index + 2
// replace the item at index + 2 with the item at index + 3
// «.. until all items after the index have been shifted left

// decrement size (because we removed an item)

Clearing (clear) theitemsinaDIYL1ist.

public class DIYList {
int size; // current number of items actually stored
Stringl[] items; // capacity is items.length

public void clear() {
// set all items to null

// set size to @

by

12

The truth is that we just implemented an ArrayList!

Main idea of an ArrayList:

e Internally use an array to hold the items.
e This array needs to have enough space (capacity) to hold the items.

e To add an item:

m First check if there is enough space.
If not, make a new array with more space and copy the old items into this array.
= Add the new item to the next empty slot.

e How should we increase the capacity?

13

The truth is that we just implemented an ArrayList!

Main idea of an ArrayList:

Internally use an array to hold the items.

This array needs to have enough space (capacity) to hold the items.
To add an item:
m First check if there is enough space.

If not, make a new array with more space and copy the old items into this array.
= Add the new item to the next empty slot.

How should we increase the capacity?

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

13.1

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

The truth is that we just implemented an ArrayList!

Main idea of an ArrayList:

Internally use an array to hold the items.
This array needs to have enough space (capacity) to hold the items.

To add an item:

m First check if there is enough space.
If not, make a new array with more space and copy the old items into this array.
= Add the new item to the next empty slot.

How should we increase the capacity?

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Each ArrayList instance has a capacity. The capacity is the size of the array used to store the
elements in the list. It is always at least as large as the list size. As elements are added to an
ArrayList, its capacity grows automatically. The details of the growth policy are not specified
beyond the fact that adding an element has constant amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a large number of

elements using the ensureCapacity operation. This may reduce the amount of incremental
reallocation.

13.2

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Let's practice with ArrayLists.

Note that Java Collections only work with reference types
We cannot directly use primitive types.

How do we use them with 1nt, doub le, char etc.?
Luckily, there are wrapper classes called Integer,Double, Character, etc.

import java.util.ArraylList; // don't forget this!
// import java.util.*; // can also be convenient to import everything in java.util

public class ArraylListExamples {
public static void main(String[] args) {
// initialize empty array list
ArrayList<Character> list = new ArrayList<>();

list.add('R");

list.add('A");

list.add('I");

list.add('N");

System.out.println("list size = " + list.size()); // 4

for (int 1 = 0; 1 < list.size(); i++) {
System.out.println("Item[" + i + "]: " + list.get(i));

b

list.remove(2); // remove item at index 2 (i.e. the 'I')

System.out.println("1list size = " + list.size()); // 3

System.out.printin(list);

}

14

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;
2 // import java.util.*; // <—— this can be more convenient!

public class HashMapExample {
public static void main(String[] args) {
String lyric = "and i love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int 1 = 0; i < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 0);

RRRRRRRER R
CONOURMRWNROOVONOU D W

b
Set<Character> characters = frequency.keySet();
for (Character c : characters) {
20 System.out.println("Character " + c + " appears " + frequency.get(c) + " times");
21 +
22}
23 }

15

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;

15.1

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

2 // import java.util.*; // <—— this can be more convenient!

15.2

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

6 String lyric = "and i love vermont, but it's the season of the sticks";

15.3

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

8 HashMap<Character, Integer> frequency = new HashMap<>();

15.4

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

9 for (int 1 = 0; i < lyric.length(); i++) {
10 char ¢ = lyric.charAt(i);

15.5

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

11 if (frequency.containsKey(c)) {

15.6

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

11 if (frequency.containsKey(c)) {
12 frequency.put(c, frequency.get(c) + 1);

15.7

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

11 if (frequency.containsKey(c)) {

14 frequency.put(c, 0);

15.8

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

18 Set<Character> characters = frequency.keySet();

15.9

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

20 System.out.println("Character " + c + " appears " + frequency.get(c) + " times");

15.10

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;
2 // import java.util.*; // <—— this can be more convenient!

public class HashMapExample {
public static void main(String[] args) {
String lyric = "and i love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int 1 = 0; i < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 0);

RRRRRRRER R
CONOURMRWNROOVONOU D W

b
Set<Character> characters = frequency.keySet();
for (Character c : characters) {
20 System.out.println("Character " + c + " appears " + frequency.get(c) + " times");
21 +
22}
23 }

15.11

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;
2 // import java.util.*; // <—— this can be more convenient!

RRRRRRRER R
CONOURMRWNROOVONOU D W

public class HashMapExample {
public static void main(Stringl[] args) {

String lyric = "and i love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int 1 = 0; i < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 0);

by

Set<Character> characters = frequency.keySet();
for (Character c : characters) {
System.out.println("Character " + c + " appears " + frequency.get(c) + " times");

Find The Bug! @’

15.12

Here it is!

import java.util.HashMap;
// import java.util.x*; // <—— this can be more convenient!

public class HashMapExample {
public static void main(String[] args) {
String lyric = "and i love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int 1 = 0; 1 < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
14 frequency.put(c, 1); // first time we encounter a character, it counts, so insert 1 not @

by

Set<Character> characters = frequency.keySet();
for (Character c : characters) {
System.out.println("Character " + ¢ + " appears " + frequency.get(c) + " times");
¥
}
b

16

See you Friday!

e We'll practice using ArrayListsin Friday's lab.

e HashMaps were just introduced now in case you find them helpful to solve problems (we'll
talk about the underlying data structures later in the semester).

e HashSets can also be useful if you want to store an unordered set of items.

e Homework 3 will be released later today!

e Reminder that Smith (go/smith) has office hours throughout the week and the 201 Course
Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

17

https://go.middlebury.edu/smith
https://go.middlebury.edu/cshelp

