Huffman Coding

What if we want to send the text bananabread?

97 141 61 01100001 a a,; Lowercase a
98 142 62 01100010 b b Lowercase b
99 143 63 01100011 c c Lowercase ¢
100 144 64 01100100 d d Lowercase d
101 145 65 01100101 e e Lowercase e
102 146 66 01100110 f f Lowercase f

103 147 67 01100111 g g Lowercase g
104 150 68 01101000 h h Lowercase h
105 151 69 01101001 i i Lowercase i

106 152 B6A 01101010 j j Lowercase j

107 153 6B 0110101 k k Lowercase k
108 154 6C 01101100 | l Lowercase |

109 155 6D 01101101 m m Lowercase m
110 156 6E 01101110 n n Lowercase n
m 157 6F 0110111 0 o Lowercase o
112 160 70 01110000 P p Lowercase p
13 161 71 01110001 q q Lowercase q
14 162 72 01110010 r r Lowercase r

15 163 73 01110011 s s Lowercase s
116 164 74 01110100 t t Lowercase t

17 165 75 01110101 u u Lowercase u
118 166 76 01110110 v 8#118; Lowercase v
119 167 77 01110111 w w Lowercase w
120 170 78 01111000 X x Lowercase x
121 171 79 01111001 y Ӂ Lowercase y
122 172 7A 01111010 z z Lowercase z

m/

https://www

https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Huffman coding:

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Huffman coding:
* Encode more frequent characters with fewer bits

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Huffman coding:
* Encode more frequent characters with fewer bits

* Encode less frequent characters with more bits

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Huffman coding:
* Encode more frequent characters with fewer bits

* Encode less frequent characters with more bits
* Uses priority queues!

Huffman Coding Algorithm

1. Countfrequency of each character.

2. Insert characters into priority queue
(lower frequency has higher priority).

3. while priority queue has at least two items:

Extract (and remove) top two items from priority queue.

Create a new internal node.

Add value (frequency) of two items and assign to internal node.
Make the left child of the new node the first (lower) item.

Make the right child of the new node the second (higher) item.
Insert new node into priority queue.

AR S o

Huffman Coding Algorithm (bananabread)

Huffman Coding Algorithm (bananabread)

1. Countfrequency of each
character.

Huffman Coding Algorithm (bananabread)

1. Countfrequency of each
character.

B0 B 0 00D
B B B B B E

Huffman Coding Algorithm (bananabread)

1. Countfrequency of each
character.

2. Insert characters IEI H B B III “
1 1 1 2 2 4

into priority queue
(lower frequency has higher

priority).

Huffman Coding Algorithm (bananabread)

1. Countfrequency of each priority queue

character.
2. Insertcharacters H B B III “
1 1 2 2 4

into priority queue
(lower frequency has higher

priority).

higher priority

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:
1. Extract(and remove)

top two items from priority
queue.

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

6. Insertnew node into priority
queue.

O OD0DR
i B B B E

higher priority

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue

least two items:
BRI
1 2 2 4

1. Extract(and remove)
top two items from priority
queue.

higher priority

AE
Aﬂ

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

0 OO0 B
B B B E

higher priority

2. Create anew internal node.

O

E
1

AE

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

0 OO0 B
B B B E

higher priority

3. Add value (frequency) of two
items and assign to internal node.

&

E
1

AE

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

0 OO0 B
B B B E

higher priority

4. Make the left child of the new

node the first (lower) item. Q

E
1

AE

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue

least two items: 2
o
3 O O 0B
® 1 2 2 4
=
o
L

5. Make the right child of the new Q

node the second (higher) item.

E
1

AE

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

—

higher priority
E
~ B
Sz

6. Insertnew node into priority
queue.

i’.‘z Forinternal consistency in today’s lab, give
lower priority to internal nodes in ties!

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:
1. Extract(and remove)

top two items from priority
queue.

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

6. Insertnew node into priority
queue.

—

higher priority
E
~ B
Sz

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue

least two items: @
X" -
2 4

1. Extract(and remove)
top two items from priority queue. B H
1 1

higher priority

-~ B
~

Huffman Coding Algorithm (bananabread)

o 4 o

DI E
1 1

3. while priority queue has at priority queue
least two items:

higher priority

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.
5. Make theright child of the new

node the second (higher) item. n B
1 2

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

higher priority
B
B

6. Insertnew node into priority
queue.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1.

Extract (and remove)
top two items from priority
queue.

Create a new internal node.

Add value (frequency) of two
items and assign to internal node.

Make the left child of the new
node the first (lower) item.

Make the right child of the new
node the second (higher) item.

Insert new node into priority
queue.

higher priority

priority queue

Huffman Coding Algorithm (bananabread)

j:{ A
O O -
1 2

3. while priority queue has at priority queue
least two items:
1. Extract(and remove)

top two items from priority
queue.

higher priority

O

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

2. Create anew internal node.

: 1
3. Add value (frequency) of two 0

higher priority

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item. m a

5. Make theright child of the new 5
node the second (higher) item.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue

least two items: °
oo
E

higher priority
~ B
~ B3
~
0

6. Insertnew node into priority
queue.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1.

Extract (and remove)
top two items from priority
queue.

Create a new internal node.
Add value (frequency) of two

items and assign to internal node.

Make the left child of the new
node the first (lower) item.

Make the right child of the new
node the second (higher) item.

Insert new node into priority
queue.

priority queue

higher priority

~ B
~ B

4

2

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue

least two items: °
°% Lo
1 2

1. Extract(and remove)

top two items from priority
1 1

queue.

higher priority

4

0 O
1 2

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

2. Create anew internal node.
3. Add value (frequency) of two

items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

priority queue

higher priority

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

higher priority

6. Insertnew node into priority
queue.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:
1. Extract(and remove)

top two items from priority
queue.

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

6. Insertnew node into priority
queue.

higher priority

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items: &
1. Extract (and remove) %’D T
top two items from priority =

queue.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

higher
priority

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items:

higher priority

6. Insertnew node into priority
queue.

Huffman Coding Algorithm (bananabread)

3. while priority queue has at priority queue
least two items: false
1. Extract(and remove)

top two items from priority
queue.

2. Create anew internal node.

3. Add value (frequency) of two
items and assign to internal node.

4. Make the left child of the new
node the first (lower) item.

5. Make theright child of the new
node the second (higher) item.

6. Insertnew node into priority
queue.

higher priority

Tree to Codes

Letter Frequency Code
A 4
B 2
N 2
D 1
E 1
R 1

Tree to Codes

Letter Frequency Code
A 4
B 2
N 2
D 1
To decode, traverse tree until leaf to retrieve characters E 1
1100010 10001111010 R 1

an d r e a d

How many bits to encode bananabread?

B A N A N A
101 11 00 11 00 11

Letter Frequency Code

A 4

B R E A D
101 100 011 11 010

B
: S e
D

Only 27 bits!

2

Today’s Lab Assignment

1. Complete the worksheet with your partner
You will want to work on the board to draw out your Huffman tree!
Remember to give internal nodes lower priorities when there are ties

2. Complete the canvas quiz on your own to submit and confirm

some of your answers
Infinite attempts are allowed

3. Ifyou finish, you can work on the word search, the programming
exam problems, and/or the homework

	Slide 1: Huffman Coding
	Slide 2: What if we want to send the text bananabread?
	Slide 3: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 4: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 5: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 6: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 7: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 8: Huffman Coding Algorithm
	Slide 9: Huffman Coding Algorithm (bananabread)
	Slide 10: Huffman Coding Algorithm (bananabread)
	Slide 11: Huffman Coding Algorithm (bananabread)
	Slide 12: Huffman Coding Algorithm (bananabread)
	Slide 13: Huffman Coding Algorithm (bananabread)
	Slide 14: Huffman Coding Algorithm (bananabread)
	Slide 15: Huffman Coding Algorithm (bananabread)
	Slide 16: Huffman Coding Algorithm (bananabread)
	Slide 17: Huffman Coding Algorithm (bananabread)
	Slide 18: Huffman Coding Algorithm (bananabread)
	Slide 19: Huffman Coding Algorithm (bananabread)
	Slide 20: Huffman Coding Algorithm (bananabread)
	Slide 21: Huffman Coding Algorithm (bananabread)
	Slide 22: Huffman Coding Algorithm (bananabread)
	Slide 23: Huffman Coding Algorithm (bananabread)
	Slide 24: Huffman Coding Algorithm (bananabread)
	Slide 25: Huffman Coding Algorithm (bananabread)
	Slide 26: Huffman Coding Algorithm (bananabread)
	Slide 27: Huffman Coding Algorithm (bananabread)
	Slide 28: Huffman Coding Algorithm (bananabread)
	Slide 29: Huffman Coding Algorithm (bananabread)
	Slide 30: Huffman Coding Algorithm (bananabread)
	Slide 31: Huffman Coding Algorithm (bananabread)
	Slide 32: Huffman Coding Algorithm (bananabread)
	Slide 33: Huffman Coding Algorithm (bananabread)
	Slide 34: Huffman Coding Algorithm (bananabread)
	Slide 35: Huffman Coding Algorithm (bananabread)
	Slide 36: Huffman Coding Algorithm (bananabread)
	Slide 37: Huffman Coding Algorithm (bananabread)
	Slide 38: Tree to Codes
	Slide 39: Tree to Codes
	Slide 40: How many bits to encode bananabread?
	Slide 41: Today’s Lab Assignment

