
Huffman Coding

What if we want to send the text bananabread?

https://www.ascii-code.com/

https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/
https://www.ascii-code.com/

Instead, we can use a variable-length encoding:
use a different number of bits for each character.

Instead, we can use a variable-length encoding:
use a different number of bits for each character.
Huffman coding:

Instead, we can use a variable-length encoding:
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits

Instead, we can use a variable-length encoding:
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits
• Encode less frequent characters with more bits

Instead, we can use a variable-length encoding:
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits
• Encode less frequent characters with more bits
• Uses priority queues!

Huffman Coding Algorithm

1. Count frequency of each character.
2. Insert characters into priority queue

(lower frequency has higher priority).
3. while priority queue has at least two items:

1. Extract (and remove) top two items from priority queue.
2. Create a new internal node.
3. Add value (frequency) of two items and assign to internal node.
4. Make the left child of the new node the first (lower) item.
5. Make the right child of the new node the second (higher) item.
6. Insert new node into priority queue.

Huffman Coding Algorithm (bananabread)

Huffman Coding Algorithm (bananabread)

1. Count frequency of each
character.

Huffman Coding Algorithm (bananabread)

1. Count frequency of each
character.

E

1

D

1

R

1

A

4

N

2

B

2

Huffman Coding Algorithm (bananabread)

1. Count frequency of each
character.

2. Insert characters
into priority queue
(lower frequency has higher
priority).

E

1

D

1

R

1

A

4

N

2

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

1. Count frequency of each
character.

2. Insert characters
into priority queue
(lower frequency has higher
priority).

E

1

D

1

R

1

A

4

N

2

B

2

priority queue

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

R

1

A

4

N

2

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

R

1

A

4

N

2

B

2

E

1

D

1

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

R

1

A

4

N

2

B

2

E

1

D

1

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

R

1

A

4

N

2

B

2

E

1

D

1

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

R

1

A

4

N

2

B

2

E

1

D

1

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

R

1

A

4

N

2

B

2

E

1

D

1

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

N

2

A

4E

1

D

1

2

 For internal consistency in today’s lab, give
lower priority to internal nodes in ties!

R

1

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

N

2

A

4E

1

D

1

2
R

1

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

N

2

A

4E

1

D

1

2
R

1

B

2

R

1

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

N

2

A

4E

1

D

1

2

3

R

1

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4E

1

D

1

2 3

R

1

B

2

N

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4E

1

D

1

2 3

R

1

B

2

N

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4E

1

D

1

2 3

R

1

B

2

N

2

E

1

D

1

2N

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4

3

R

1

B

2

E

1

D

1

2N

2

4

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4

3

R

1

B

2 E

1

D

1

2N

2

4

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4

3

R

1

B

2 E

1

D

1

2N

2

4

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

A

4

3

R

1

B

2 E

1

D

1

2N

2

4

A

4
3

R

1

B

2

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

hi
gh

er

pr
io

ri
ty

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

hi
gh

er

pr
io

ri
ty

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

11

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items:

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

11

hi
gh

er
 p

ri
or

it
y

Huffman Coding Algorithm (bananabread)

3. while priority queue has at
least two items: false

1. Extract (and remove)
top two items from priority
queue.

2. Create a new internal node.
3. Add value (frequency) of two

items and assign to internal node.
4. Make the left child of the new

node the first (lower) item.
5. Make the right child of the new

node the second (higher) item.
6. Insert new node into priority

queue.

priority queue

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

11

Tree to Codes

Letter Frequency Code

A 4

B 2

N 2

D 1

E 1

R 1

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

11

Tree to Codes

Letter Frequency Code

A 4 11

B 2 101

N 2 00

D 1 010

E 1 011

R 1 100

E

1

D

1

2N

2

4

A

4
3

R

1

B

2

7

11
0

0

0 0

0

11

11

1

Left edges: 0
Right edges: 1

To decode, traverse tree until leaf to retrieve characters

1100010 10001111010

a n d r e a d

How many bits to encode bananabread?

Letter Frequency Code

A 4 11

B 2 101

N 2 00

D 1 010

E 1 011

R 1 100

Only 27 bits!

B A N A N A

101 11 00 11 00 11

B R E A D

101 100 011 11 010

Today’s Lab Assignment

1. Complete the worksheet with your partner
You will want to work on the board to draw out your Huffman tree!
Remember to give internal nodes lower priorities when there are ties

2. Complete the canvas quiz on your own to submit and confirm
some of your answers
Infinite attempts are allowed

3. If you finish, you can work on the word search, the programming
exam problems, and/or the homework

	Slide 1: Huffman Coding
	Slide 2: What if we want to send the text bananabread?
	Slide 3: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 4: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 5: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 6: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 7: Instead, we can use a variable-length encoding: use a different number of bits for each character.
	Slide 8: Huffman Coding Algorithm
	Slide 9: Huffman Coding Algorithm (bananabread)
	Slide 10: Huffman Coding Algorithm (bananabread)
	Slide 11: Huffman Coding Algorithm (bananabread)
	Slide 12: Huffman Coding Algorithm (bananabread)
	Slide 13: Huffman Coding Algorithm (bananabread)
	Slide 14: Huffman Coding Algorithm (bananabread)
	Slide 15: Huffman Coding Algorithm (bananabread)
	Slide 16: Huffman Coding Algorithm (bananabread)
	Slide 17: Huffman Coding Algorithm (bananabread)
	Slide 18: Huffman Coding Algorithm (bananabread)
	Slide 19: Huffman Coding Algorithm (bananabread)
	Slide 20: Huffman Coding Algorithm (bananabread)
	Slide 21: Huffman Coding Algorithm (bananabread)
	Slide 22: Huffman Coding Algorithm (bananabread)
	Slide 23: Huffman Coding Algorithm (bananabread)
	Slide 24: Huffman Coding Algorithm (bananabread)
	Slide 25: Huffman Coding Algorithm (bananabread)
	Slide 26: Huffman Coding Algorithm (bananabread)
	Slide 27: Huffman Coding Algorithm (bananabread)
	Slide 28: Huffman Coding Algorithm (bananabread)
	Slide 29: Huffman Coding Algorithm (bananabread)
	Slide 30: Huffman Coding Algorithm (bananabread)
	Slide 31: Huffman Coding Algorithm (bananabread)
	Slide 32: Huffman Coding Algorithm (bananabread)
	Slide 33: Huffman Coding Algorithm (bananabread)
	Slide 34: Huffman Coding Algorithm (bananabread)
	Slide 35: Huffman Coding Algorithm (bananabread)
	Slide 36: Huffman Coding Algorithm (bananabread)
	Slide 37: Huffman Coding Algorithm (bananabread)
	Slide 38: Tree to Codes
	Slide 39: Tree to Codes
	Slide 40: How many bits to encode bananabread?
	Slide 41: Today’s Lab Assignment

