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use a different number of bits for each character.



Instead, we can use a variable-length encoding: 
use a different number of bits for each character.
Huffman coding:



Instead, we can use a variable-length encoding: 
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits



Instead, we can use a variable-length encoding: 
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits
• Encode less frequent characters with more bits



Instead, we can use a variable-length encoding: 
use a different number of bits for each character.
Huffman coding:
• Encode more frequent characters with fewer bits
• Encode less frequent characters with more bits
• Uses priority queues!



Huffman Coding Algorithm

1. Count frequency of each character.
2. Insert characters into priority queue

(lower frequency has higher priority).
3. while priority queue has at least two items:

1. Extract (and remove) top two items from priority queue.
2. Create a new internal node.
3. Add value (frequency) of two items and assign to internal node.
4. Make the left child of the new node the first (lower) item.
5. Make the right child of the new node the second (higher) item.
6. Insert new node into priority queue.
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3. while priority queue has at 
least two items:

1. Extract (and remove) 
top two items from priority 
queue.

2. Create a new internal node.
3. Add value (frequency) of two 

items and assign to internal node.
4. Make the left child of the new 

node the first (lower) item.
5. Make the right child of the new 

node the second (higher) item.
6. Insert new node into priority 

queue.
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3. while priority queue has at 
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Tree to Codes
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Tree to Codes

Letter Frequency Code

A 4 11

B 2 101

N 2 00

D 1 010

E 1 011

R 1 100
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To decode, traverse tree until leaf to retrieve characters
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a n d r e a d



How many bits to encode bananabread?

Letter Frequency Code

A 4 11

B 2 101

N 2 00

D 1 010

E 1 011

R 1 100

Only 27 bits!

B A N A N A

101 11 00 11 00 11

B R E A D

101 100 011 11 010



Today’s Lab Assignment

1. Complete the worksheet with your partner
You will want to work on the board to draw out your Huffman tree! 
Remember to give internal nodes lower priorities when there are ties

2. Complete the canvas quiz on your own to submit and confirm 
some of your answers
Infinite attempts are allowed

3. If you finish, you can work on the word search, the programming 
exam problems, and/or the homework
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