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Consider the sentence “The dog ran up the street and barked loudly.”, which
might be tokenized as follows. What relationships between tokens would be
Important to capture for a model to generate coherent “next” tokens?

['The', ' dog', ' ran', ' up', ' the', ' street', ' and', ' bark', 'ed', '




Slide 1 Notes

What is the subject of those two verbs? The dog. What about tense and
number? Past tense and singular. Presumably whatever text is generated
next should be about a dog, similarly past tense, and agree in number with
Lédog”.

Would a “2nd order” Markov model, i.e., looking at the two previous words,
be able to capture that information? Probably not... Although in fairness
the output for GPT-2 small is not necessarily great either.

What we observe then is the need capture, potentially “long-range”, de-
pendencies between tokens, and do so in a context-dependent way. That
latter implies we need some to learn what dependencies are relevant. This
is our focus for today.
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(Decoder-only) Transformer Architecture
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Slide 2 Notes

Notice that tokens are processed in parallel, i.e., the entire input sequence
is processed at once, rather than sequentially as in RNNs. This is a key
feature of Transformer architectures that enables efficient training and
inference on modern compute hardware. Let’s follow the data flow through
the model:

1. The input text is tokenized as we discussed previously,

2. then the tokens are converted to embeddings (dense vector represen-
tations of size d,, q40), and

3. combined with positional encodings that provide information about
the position of each token in the sequence.

4. The resulting representations are then passed through multiple layers
of Transformer blocks, each consisting of a multi-head self-attention
layer followed by a feed-forward neural network (similar to those we
discussed previously).

5. Finally, a linear layer maps the output of the last Transformer block
to the vocabulary size to produce logits for predicting the next token.

The positional encoding are required to enable the parallel processing of
tokens. The Transformer architecture doesn’t inherently encode the order
of the tokens (each token undergoes the same transformations) so positional
encodings are added to the token embeddings to provide that ordering
information. Without positional encodings, the model would treat all
tokens as if they were at the same position in the input sequence, i.e., “The
dog bit the man” and “The man bit the dog” would be processed identically.
Positional encodings can be fixed (e.g., using sinusoidal functions) or learned
during training (the case for GPT2).

The self-attention block is where the “mixing” of information across to-
kens occurs, enabling the model to capture dependencies between tokens
regardless of their distance in the sequence.
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Tracing the self-attention calculation
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Slide 3 Notes

Let’s trace through the attention calculation for the token “She” in this
attention head. “She” is the query, i.e., g5. Each element in that corre-
sponding row of the attention weights (row at index 8 in the heatmap)
corresponds to the dot product between the query vector for “She” and
the key vectors for “She” and all preceding tokens in the sequence (e.g.,
ko for “The”, k, for “girl”, ..), scaled and normalized via softmax. The
resulting distribution is used to compute a weighted sum of the value vec-
tors to produce zg, the output representation for “She” from this attention
head. Specifically for this head, zg = 0.25v, + 0.41v; + ..., i.e., primarily
incorporates information from ¢, and t;, “The” and “girl”.
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Which of the following best describes the attention weights in self-
attention?

a. The frequency of each token in the training data.

b. How important each token is to the overall meaning of the sequence.

c. How similar the semantic meaning of each token is to every other token.

ow much other tokens are relevant to computing the representation of a given
token.



Slide 4 Notes

Answer: D

Recall the attention weights don’t represent how important a token is in
general. They are the weights used to compute the output for a specific
token from the values of all tokens, i.e. “How much other tokens are relevant
to computing the representation of a given token.” They are not function of
token frequency or semantic similarity (although that latter may indirectly
influence the weights learned).
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In the absence of positional encodings and causal masking, which of the
following must be true about the attention weights for the inputs:

1. “The dog bit the man”
2. "The man bit the dog”

a. AttentionrlmIl dog > Attentionfnan ~dog
l%*Alttentionlman—>dog — Attention?nan%dog
2

c. Attention® < Attention

man—dog man—-dog
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Answer: B

Recall that all tokens are transformed by the same weight matrices, thus
in the absence of positional encodings, the @, K, and V vectors are the
same for a given token regardless of its position in the sequence (although
the overall order is shuffled). Thus the attention weights between any pair
of tokens must be the same regardless of their positions.

Note there is a subtlety here implied in the question. This assumes that
model considers the entire sequence. As we will see in a moment, in
decoder-only architectures, attention is masked to prevent “looking ahead”
at future tokens (termed “causal masking”). In that case, the causal
masking introduces ordering information, i.e., “man” can attend to “dog”
in sequence 1, but not in sequence 2.
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For a sequence length of n = 1024 tokens and model dimension of
drodel = 768, what is the size of the attention weight matrix in a self-

attention layer?
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Answer: D

Recall that the attention weight matrix describes how each token attends to
every other token in the sequence. Thus it is a square matrix of size n x n,
i.e., @(n?). The answer does not depend on the model dimension d,,,, .
or the number of heads (which is a constant factor in this context). What
does answer E describe? The computational complexity of computing the
attention weights, which involves d,,,4.;-dimensional dot products for each
of the n? pairs of tokens.
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In the sentence “The doctor asked the nurse a question. She”, which token(s)
do you expect “She” to most strongly attend to in Layer 5 Head 10 of GPT2

(the same head we visualized earlier)?

a. "doctor”
b}”nu rse”
c.“The"

d. “question”

e. "doctor” and “nurse” equally
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Answer: B

This head appears to focus on gendered pronoun resolution, i.e., linking
pronouns to their antecedents. In this case, we expect the training data to
most commonly describe/imply nurses as female, and thus expect “She”
to attend most strongly to “nurse”.
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Slide 8 Notes

Notice that the model has learned gendered associations. “She” attends
strongly to “nurse”, while “He” attends strongly to “doctor”. It is not
that the developer’s explicitly programmed these associations into the
model; rather, the model learned these associations from its training
data. That training data incorporates past (and current) asymmetric
gender distributions in those professions, societal stereotypes, and more
as reflected in Internet text. Specifically, we would expect there are many
more examples of “doctor” being referred to as “he” and “nurse” being
referred to as “she” online. And the model reflects those patterns back
to us in the parameters it learns and the text it generates. When we talk
about biases in LLMs (our next topic), this is one example of what we are
talking about. These models are only as “neutral” as the data they are
trained on.
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