CSCI 1010 Class 1

Profs. Michael Linderman and Phil Chodrow
Department of Computer Science
Middlebury College

1 data = np.array([1.0, 2.0, 3.0, 4.0])

2 math.sgrt (np.sum(np.power (data - np.mean(data), 2))/(len(data) - 1))
7.5 X
- | i
C ~2.$ 7] TN g
z | 7.7 —-'0-]"2’
Tl o
.—-ﬂ Lt - [T

Ziﬁzg-ﬁra_zj‘,tfjkiﬁy-"%:lhgky‘ E:ﬁ

Slide 1 Notes

This code performs the following operations:

1.
2.

Creates a 1-D array from a list.

Performs a “reduction”, computing the mean, to produce the scalar
2.5.

Performs an element-wise subtraction to compute the difference from
the mean. Note that the scalar argument, the mean, is “broadcasted”
to be the same size as the vector.

1.0 2.5
2.0 2.5
3.0 |25
4.0 2.5

Performs an element-wise “squaring” via the ** operator.

—1.52
—0.52
0.52
1.52

Performs a sum reduction of the intermediate vector, producing the
scalar 5.

2.25+0.25 + 0.25 + 2.25

Performs the division and square root operations over scalar values.

0/

import numpy as np

a = np.array([1, 2, 31)
b = np.array ([4, 5, 6])
X =3 * b + a

After above the code executes what is the value of x?

a. 13

@p.array([lB, 17, 21])

C.np.array ([15, 21, 27])

d.np.array([7, 7, 91)

Slide 2 Notes

Answer: B

3*b is np.array([12, 15, 18]) and the addition is element-wise so the result
is np.array([13, 17, 21])

0/

import numpy as np

a = np.array([1, 2, 31)

b = np.array ([4, 5, 6])

X = np.sum(np.power (b—a, 2))

k__,.—\
te 2 3]
After above the code executes what is the value of x?

a. 13

b.21

D

d.np.array ([27, 27, 271)

Slide 3 Notes

Answer: C

b-a is np.array([3, 3, 3]) thus the element-wise power operation produces
np.array([9, 9, 9]). The resulting sum of that vector is the scalar 27.

0/

returns = np.cumprod (np.random. laplace (mean, scale,

Which of the following snippets are equivalent to the above NumPy code?
Assume there is a 1aplace function that has the mean and scale as

arguments and returns a single sample.

a.

returns = []

for i in range (240):
sample = laplace (mean, scale)
returns.append (sample)

returns = []

prod = 1.0

for i in range (240):
sample = laplace (mean, scale)
returns.append (sample)
prod = prod * sample

returns = []

prod = 1.0

for i in range (240):
sample = laplace (mean, scale)
prod = prod * sample
returns.append (prod)

returns = []

prod = 1.0

for i in range (240):
sample = laplace (mean, scale)
returns.append (prod)
prod = prod * sample

Slide 4 Notes

Answer: B

The cumprod function computes a cumulative product. Answers A and C
only record the samples. Answer D has a “off by one”, that is starts with
the initial values and doesn’t record the final product.

-y

Slide 5 Notes

Our first instinct might be to convert the product (J]) and sum (37)
operations into for loops, as they are iterative computations over our 240
month time period. As we saw already, we can implement the product
operation as a vectorized operation across a 2-D array. Could we do so
with the sum as well?

240 240
Pyyy =Y $100 [7,
m=1 i=m
240 240
=$100> [[
m=1i=m
240 240
= $100(H r; + Hri + .+ 7o)
i=1 i=2
240
= $100(rg40 + (7240 * T239) + - Hn)
i1

240
= $100(ry + (ry - 7r9) + ... Hﬁ)
i=1

The sequence 74, (11 - 75), ..., H?ﬁg r; is the cumulative product! That is the

right hand side of the last expression is the sum of the cumulative product
of the monthly returns!

	Slide 1 Notes
	Slide 2 Notes
	Slide 3 Notes
	Slide 4 Notes
	Slide 5 Notes

