
CSCI 1010 Class 1
Profs. Michael Linderman and Phil Chodrow

Department of Computer Science
Middlebury College

data = np.array([1.0, 2.0, 3.0, 4.0])1

math.sqrt(np.sum(np.power(data - np.mean(data), 2))/(len(data) - 1))2

Slide 1 Notes
This code performs the following operations:

1. Creates a 1-D array from a list.

2. Performs a “reduction”, computing the mean, to produce the scalar
2.5.

3. Performs an element-wise subtraction to compute the difference from
the mean. Note that the scalar argument, the mean, is “broadcasted”
to be the same size as the vector.

⎡
⎢⎢
⎣

1.0
2.0
3.0
4.0

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

2.5
2.5
2.5
2.5

⎤
⎥⎥
⎦

4. Performs an element-wise “squaring” via the ** operator.

⎡
⎢⎢
⎣

−1.52

−0.52

0.52

1.52

⎤
⎥⎥
⎦

5. Performs a sum reduction of the intermediate vector, producing the
scalar 5.

2.25 + 0.25 + 0.25 + 2.25

6. Performs the division and square root operations over scalar values.

√ 5
4 − 1

1

After above the code executes what is the value of x?

a. 13

b. np.array([13, 17, 21])

c. np.array([15, 21, 27])

d. np.array([7, 7, 9])

import numpy as np1

a = np.array([1, 2, 3])2

b = np.array([4, 5, 6])3

x = 3 * b + a4

Slide 2 Notes
Answer: B

3*b is np.array([12, 15, 18]) and the addition is element-wise so the result
is np.array([13, 17, 21])

1

After above the code executes what is the value of x?

a. 13

b. 21

c. 27

d. np.array([27, 27, 27])

import numpy as np1

a = np.array([1, 2, 3])2

b = np.array([4, 5, 6])3

x = np.sum(np.power(b-a, 2))4

Slide 3 Notes
Answer: C

b-a is np.array([3, 3, 3]) thus the element-wise power operation produces
np.array([9, 9, 9]). The resulting sum of that vector is the scalar 27.

1

Which of the following snippets are equivalent to the above NumPy code?

Assume there is a laplace function that has the mean and scale as

arguments and returns a single sample.

a. b.

c. d.

returns = np.cumprod(np.random.laplace(mean, scale, 240))1

returns = []1

for i in range(240):2

 sample = laplace(mean, scale)3

 returns.append(sample)4

returns = []1

prod = 1.02

for i in range(240):3

 sample = laplace(mean, scale)4

 prod = prod * sample5

 returns.append(prod)6

returns = []1

prod = 1.02

for i in range(240):3

 sample = laplace(mean, scale)4

 returns.append(sample)5

 prod = prod * sample6

returns = []1

prod = 1.02

for i in range(240):3

 sample = laplace(mean, scale)4

 returns.append(prod) 5

 prod = prod * sample6

Slide 4 Notes
Answer: B

The cumprod function computes a cumulative product. Answers A and C
only record the samples. Answer D has a “off by one”, that is starts with
the initial values and doesn’t record the final product.

1

= $100P240 ∑
m=1

240

∏
i=m

240

ri

Slide 5 Notes
Our first instinct might be to convert the product (∏) and sum (∑)
operations into for loops, as they are iterative computations over our 240
month time period. As we saw already, we can implement the product
operation as a vectorized operation across a 2-D array. Could we do so
with the sum as well?

𝑃240 =
240
∑
𝑚=1

$100
240
∏
𝑖=𝑚

𝑟𝑖

= $100
240
∑
𝑚=1

240
∏
𝑖=𝑚

𝑟𝑖

= $100(
240
∏
𝑖=1

𝑟𝑖 +
240
∏
𝑖=2

𝑟𝑖 + ... + 𝑟240)

= $100(𝑟240 + (𝑟240 ⋅ 𝑟239) + ...
240
∏
𝑖=1

𝑟𝑖)

= $100(𝑟1 + (𝑟1 ⋅ 𝑟2) + ...
240
∏
𝑖=1

𝑟𝑖)

The sequence 𝑟1, (𝑟1 ⋅ 𝑟2), ..., ∏240
𝑖=1 𝑟𝑖 is the cumulative product! That is the

right hand side of the last expression is the sum of the cumulative product
of the monthly returns!

1

	Slide 1 Notes
	Slide 2 Notes
	Slide 3 Notes
	Slide 4 Notes
	Slide 5 Notes

