
Problem Set 1

Problem 1
Suppose we have 𝑛 independent and identically-distributed samples 𝑥1,…, 𝑥𝑛 from a Gaussian
distribution with unknown mean 𝜇 and known variance 𝜎2. The log-likelihood function for this
data is

ℒ(𝐱; 𝜎2, 𝜇) = ∑
𝑛

𝑖=1
log 𝑝(𝑥𝑖; 𝜎2, 𝜇)

= ∑
𝑛

𝑖=1
log( 1√

2𝜋𝜎2
exp(−(𝑥𝑖 − 𝜇)2

2𝜎2 ))

= ∑
𝑛

𝑖=1
(−1

2
log(2𝜋𝜎2) − (𝑥𝑖 − 𝜇)2

2𝜎2 )

= −𝑛
2

log(2𝜋𝜎2) − 1
2𝜎2 ∑

𝑛

𝑖=1
(𝑥𝑖 − 𝜇)2.

Compute the gradient of this function ∇ℒ(𝐱; 𝜎2, 𝜇) with respect to the parameters 𝜇 and 𝜎2.

1



Problem 2
Suppose that we have data points 𝑥1, 𝑥2,…, 𝑥𝑛 sampled independent and identically-distributed
from a Gaussian distribution with unknown mean 𝜇 and unknown variance 𝜎2. Symbolically, for
each 𝑖, 𝑥𝑖 ∼ 𝒩(𝜇, 𝜎2).

Calculate the maximum-likelihood estimates 𝜇̂ and 𝜎̂2 of the parameters 𝜇 and 𝜎2 by solving the
equation ∇ℓ(𝜇, 𝜎2) = 𝟎. Justify your calculations.
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Problem 3
Derive the maximum-likelihood estimates 𝑤̂0 and 𝑤̂1 for the 1-dimensional linear-Gaussian
model

𝑦𝑖 ∼ 𝒩(𝑤1𝑥𝑖 + 𝑤0, 𝜎2)

by setting the gradient to zero, and solving for the parameters. You may find it useful to recall the
relationship between the log-likelihood and the mean-squared error loss.
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Problem 4
Recall that, if 𝑓 : ℝ → ℝ is a differentiable function, then 𝑥* is a critical point of 𝑓  if 𝑑𝑓

𝑑𝑥(𝑥
*) =

𝑓 ′(𝑥*) = 0.

Definition 0.1 :  A function 𝑔 : ℝ → ℝ is monotonic increasing on an interval 𝐼 ⊆ ℝ if for
all 𝑥1, 𝑥2 ∈ 𝐼  such that 𝑥1 < 𝑥2, we have 𝑔(𝑥1) ≤ 𝑔(𝑥2). Function 𝑔 is strictly monotonic
increasing if 𝑔(𝑥1) < 𝑔(𝑥2) for all such 𝑥1, 𝑥2.

An important mathematical property we’ll use in class is the following theorem:

Theorem 0.1 :  Let 𝑓 : ℝ → ℝ be a differentiable function such that 𝑓(𝑥) > 0 for all 𝑥 ∈
ℝ. Then, 𝑥* is a critical point of 𝑓  if and only if 𝑥* is also a critical point of the function
ℎ(𝑥) = log 𝑓(𝑥).

(You may assume that the log is base 𝑒, which is sometimes also written ln 𝑓(𝑥).)

Informally, this theorem says that if we want to find a critical point of 𝑓 , it’s ok to take the
logarithm of 𝑓  first and then find the critical points of log 𝑓  instead. In many machine learning
contexts it’s much easier to work with log 𝑓 .

Part A
Prove that the function 𝑘(𝑥) = log 𝑥 is strictly monotonic increasing on the interval (0,∞). It’s
sufficient to evaluate the derivative of 𝑘 and apply the mean value theorem.

Part B
Use Part A to prove Theorem 0.1. It’s sufficient to calculate 𝑑ℎ

𝑑𝑥  in terms of 𝑑𝑓
𝑑𝑥  (use the chain rule!).

Can it be true that one of 𝑑𝑓
𝑑𝑥(𝑥

*) or 𝑑ℎ
𝑑𝑥(𝑥*) is zero while the other is non-zero?
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